Saxenda® (liraglutide) injection, for subcutaneous use

INDICATIONS AND USAGE

Saxenda® is a glucagon-like peptide-1 (GLP-1) receptor agonist indicated as an adjunct to a reduced-calorie diet and increased physical activity for chronic weight management in adult patients with an initial body mass index (BMI) of

- 30 kg/m² or greater (obese) (1) or
- 27 kg/m² or greater (overweight) in the presence of at least one weight-related comorbid condition (e.g. hypertension, type 2 diabetes mellitus, or dyslipidemia) (1).

Limitations of Use:

- Saxenda® is not indicated for the treatment of type 2 diabetes (1).
- Saxenda® should not be used in combination with any other GLP-1 receptor agonist (1).
- Saxenda® should not be used with insulin (1, 5.4).
- The effects of Saxenda® on cardiovascular morbidity and mortality have not been established (1).
- The safety and efficacy of coadministration with other products for weight loss have not been established (1).
- Saxenda® has not been studied in patients with a history of thyroid C-cell tumors (1, 5.2).

DOSE AND ADMINISTRATION

- Recommended dose of Saxenda® is 3 mg daily. Administer at any time of day, without regard to the timing of meals (2).
- Initiate at 0.6 mg per day for one week. In weekly intervals, increase the dose until a dose of 3 mg is reached (2).
- Inject subcutaneously in the abdomen, thigh or upper arm (2).
- The injection site and timing can be changed without dose adjustment (2).

DOSE FORMS AND STRENGTHS

- Injection, pre-filled, multi-dose pen that delivers doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg (6 mg/mL, 3 mL) (3).

CONTRAINDICATIONS

- Personal or family history of medullary thyroid carcinoma or Multiple Endocrine Neoplasia syndrome type 2 (4, 5.1).
- Hypersensitivity to liraglutide or any product components (4, 5.7).
- Pregnancy (4, 8.1).

ADVERSE REACTIONS

- Most common adverse reactions, reported in greater than or equal to 5% are: nausea, hypoglycemia, diarrhea, constipation, vomiting, headache, decreased appetite, dyspepsia, fatigue, dizziness, abdominal pain, and increased lipase (6.1).

WARNINGS AND PRECAUTIONS

- Thyroid C-cell Tumors: See Boxed Warning (5.1).
- Acute Pancreatitis: Discontinue promptly if pancreatitis is suspected. Do not restart if pancreatitis is confirmed (5.2).
- Acute Gallbladder Disease: If cholelithiasis or cholecystitis are suspected, gallbladder studies are indicated (5.3).
- Serious Hypoglycemia: Can occur when Saxenda® is used with an insulin secretagogue (e.g. a sulfonylurea). Consider lowering the dose of anti-diabetic drugs to reduce the risk of hypoglycemia (2, 5.4).
- Heart Rate Increase: Monitor heart rate at regular intervals (5.5).
- Renal Impairment: Has been reported postmarketing, usually in association with nausea, vomiting, diarrhea, or dehydration which may sometimes require hemodialysis. Use caution when initiating or escalating doses of Saxenda® in patients with renal impairment (5.6).
- Hypersensitivity Reactions: Postmarketing reports of serious hypersensitivity reactions (e.g., anaphylactic reactions and angioedema). Discontinue Saxenda® and other suspect medications and promptly seek medical advice (5.7).
- Suicidal Behavior and Ideation: Monitor for depression or suicidal thoughts. Discontinue Saxenda® if symptoms develop (5.8).

U.S. APPROVALS

Initial U.S. Approval: 2010

REFERENCES

- Liraglutide causes thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether Saxenda® causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as the human relevance of liraglutide-induced rodent thyroid C-cell tumors has not been determined (5.1).
- Saxenda® is contraindicated in patients with a personal or family history of MTC or in patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). Counsel patients regarding the potential risk of MTC and the symptoms of thyroid tumors (4, 5.1).

PATIENT COUNSELING INFORMATION

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide.

Revised: 4/2017
FULL PRESCRIBING INFORMATION

• Liraglutide causes dose-dependent and treatment-duration-dependent thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether Saxenda® causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as the human relevance of liraglutide-induced rodent thyroid C-cell tumors has not been determined [see Warnings and Precautions (5.1) and Nonclinical Toxicology (13.1)]. Saxenda® is contraindicated in patients with a personal or family history of MTC and in patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). Counsel patients regarding the potential risk of MTC with use of Saxenda® and inform them of symptoms of thyroid tumors (e.g., a mass in the neck, dysphagia, dyspnea, persistent hoarseness). Routine monitoring of serum calcitonin or using thyroid ultrasound is of uncertain value for early detection of MTC in patients treated with Saxenda® [see Contraindications (4), Warnings and Precautions (5.1)].

1 INDICATIONS AND USAGE
Saxenda® is indicated as an adjunct to a reduced-calorie diet and increased physical activity for chronic weight management in adult patients with an initial body mass index (BMI) of:

• ≥30 kg/m² or greater (obese), or
• ≥27 kg/m² or greater (overweight) and at least 1 weight-related comorbid condition (e.g., hypertension, type 2 diabetes mellitus, or dyslipidemia)

Limits of Use
Saxenda® is not indicated for the treatment of type 2 diabetes mellitus.

2 DOSAGE AND ADMINISTRATION
The recommended dosage of Saxenda® is 3 mg daily. The dose escalation schedule in Table 1 should be used to reduce the likelihood of gastrointestinal symptoms. If patients do not tolerate an increased dose during dose escalation, consider delaying dose escalation for approximately one additional week. Saxenda® should be discontinued, however, if a patient cannot tolerate the 3 mg dose, as efficacy has not been established at lower doses (0.6, 1.2, 1.8, and 2.4 mg).

Table 1. Dose Escalation Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6 mg</td>
</tr>
<tr>
<td>2</td>
<td>1.2 mg</td>
</tr>
<tr>
<td>3</td>
<td>1.8 mg</td>
</tr>
<tr>
<td>4</td>
<td>2.4 mg</td>
</tr>
<tr>
<td>5 and onward</td>
<td>3 mg</td>
</tr>
</tbody>
</table>

Saxenda® should be taken once daily at any time of day, without regard to the timing of meals. Saxenda® can be injected subcutaneously in the abdomen, thigh, or upper arm. The injection site and timing can be changed without dose adjustment. Saxenda® must not be administered intravenously or intramuscularly.

When initiating Saxenda® in patients taking insulin secretagogues (such as sulfonylureas), consider reducing the dose of the insulin secretagogue (for example, by one-half) to reduce the risk for hypoglycemia, and monitor blood glucose. Saxenda® and insulin should not be used together [see Warnings and Precautions (5.4) and Adverse Reactions (6.1)]. Conversely, if discontinuing Saxenda® in patients with type 2 diabetes, monitor for an increase in blood glucose.

Evaluate the change in body weight 16 weeks after initiating Saxenda® and discontinue Saxenda® if the patient has not lost at least 4% of baseline body weight, since it is unlikely that the patient will achieve and sustain clinically meaningful weight loss with continued treatment.

If a dose is missed, the once-daily regimen should be resumed as prescribed with the next scheduled dose. An extra dose or increase in dose should not be taken to make up for the missed dose. If more than 3 days have elapsed since the last Saxenda® dose, patients should reinitiate Saxenda® at 0.6 mg daily and follow the dose escalation schedule in Table 1, which may reduce the occurrence of gastrointestinal symptoms associated with reinitiation of treatment.

Prior to initiation of Saxenda®, patients should be trained by their healthcare professional on proper injection technique. Training reduces the risk of administration errors such as needle sticks and incomplete dosing. Refer to the accompanying Instructions for Use for complete administration instructions with illustrations. Saxenda® solution should be inspected prior to each injection, and the solution should be used only if it is clear, colorless, and contains no particles. BMI is calculated by dividing weight in (kilograms) by height (in meters) squared. A chart for determining BMI based on height and weight is provided in Table 2.

Table 2. BMI Conversion Chart

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>Height (in)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>58</td>
<td>147.3</td>
</tr>
<tr>
<td>130</td>
<td>59</td>
<td>149.9</td>
</tr>
<tr>
<td>135</td>
<td>60</td>
<td>152.4</td>
</tr>
<tr>
<td>140</td>
<td>61</td>
<td>154.9</td>
</tr>
<tr>
<td>145</td>
<td>62</td>
<td>157.5</td>
</tr>
<tr>
<td>150</td>
<td>63</td>
<td>160.0</td>
</tr>
<tr>
<td>155</td>
<td>64</td>
<td>162.6</td>
</tr>
<tr>
<td>160</td>
<td>65</td>
<td>165.1</td>
</tr>
<tr>
<td>165</td>
<td>66</td>
<td>167.6</td>
</tr>
<tr>
<td>170</td>
<td>67</td>
<td>170.2</td>
</tr>
<tr>
<td>175</td>
<td>68</td>
<td>172.7</td>
</tr>
<tr>
<td>180</td>
<td>69</td>
<td>175.3</td>
</tr>
<tr>
<td>185</td>
<td>70</td>
<td>177.8</td>
</tr>
<tr>
<td>190</td>
<td>71</td>
<td>180.3</td>
</tr>
<tr>
<td>195</td>
<td>72</td>
<td>182.9</td>
</tr>
<tr>
<td>200</td>
<td>73</td>
<td>185.4</td>
</tr>
<tr>
<td>205</td>
<td>74</td>
<td>188.0</td>
</tr>
<tr>
<td>210</td>
<td>75</td>
<td>190.5</td>
</tr>
<tr>
<td>215</td>
<td>76</td>
<td>193.0</td>
</tr>
<tr>
<td>220</td>
<td>77</td>
<td>196.5</td>
</tr>
<tr>
<td>225</td>
<td>78</td>
<td>199.0</td>
</tr>
</tbody>
</table>

3 DOSAGE FORMS AND STRENGTHS
Solution for subcutaneous injection, pre-filled, multi-dose pen that delivers doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg, or 3 mg (6 mg/mL, 3 mL).

4 CONTRAINDICATIONS
Saxenda® is contraindicated in:

• Patients with a personal or family history of medullary thyroid carcinoma (MTC) or patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2) [see Warnings and Precautions (5.1)].
• Patients with a prior serious hypersensitivity reaction to liraglutide or to any of the product components [see Warnings and Precautions (5.7)]
• Pregnancy [see Use in Specific Populations (8.1)].

5 WARNINGS AND PRECAUTIONS
5.1 Risk of Thyroid C-Cell Tumors
Liraglutide causes dose-dependent and treatment-duration-dependent thyroid C-cell tumors (adenomas and/or carcinomas) at clinically relevant exposures in both genders of rats and mice [see Nonclinical Toxicology (13.1)]. Malignant thyroid C-cell carcinomas were detected in rats and mice. It is unknown whether Saxenda® will cause thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as the human relevance of liraglutide-induced rodent thyroid C-cell tumors has not been determined.

Cases of MTC in patients treated with liraglutide have been reported in the postmarketing period; the data in these reports are insufficient to establish or exclude a causal relationship between MTC and liraglutide use in humans.

Saxenda® is contraindicated in patients with a personal or family history of MTC or in patients with MEN 2. Counsel patients regarding the potential risk for MTC with the use of Saxenda® and inform them of symptoms of thyroid tumors (e.g., a mass in the neck, dysphagia, dyspnea, persistent hoarseness). Routine monitoring of serum calcitonin or using thyroid ultrasound is of uncertain value for early detection of MTC in patients treated with Saxenda®. Such monitoring may increase the risk of unnecessary procedures, due to low test specificity for serum calcitonin and a high background incidence of thyroid disease. Significantly elevated serum calcitonin may indicate MTC, and patients with MTC usually have calcitonin values greater than 50 ng/L. If serum calcitonin is measured and found to be elevated, the patient should be further evaluated. Patients with thyroid nodules noted on physical examination or neck imaging should also be further evaluated.

5.2 Acute Pancreatitis
Based on spontaneous postmarketing reports, acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, has been observed in patients treated with liraglutide. After initiation of Saxenda®, observe patients carefully for signs and symptoms of pancreatitis (including persistent severe abdominal pain, sometimes radiating to the back and which may or may not be accompanied by vomiting). If pancreatitis is suspected, Saxenda® should promptly be discontinued and appropriate management should be initiated. If pancreatitis is confirmed, Saxenda® should not be restarted.
In Saxenda® clinical trials, acute pancreatitis was confirmed by adjudication in 9 (0.3%) of 3291 Saxenda®-treated patients and 2 (0.1%) of 1843 placebo-treated patients. In addition, there were 2 cases of acute pancreatitis in Saxenda®-treated patients who prematurely withdrew from these clinical trials, occurring 74 and 124 days after the last dose. There were 2 additional cases in Saxenda®-treated patients, 1 during an off-treatment follow-up period within 2 weeks of discontinuing Saxenda®, and 1 that occurred in a patient who completed treatment and was off-treatment for 106 days.

It is unknown whether patients with a history of pancreatitis are at increased risk for pancreatitis while using Saxenda®, since these patients were excluded from clinical trials.

5.3 Acute Gallbladder Disease

In Saxenda® clinical trials, 1 of 3384 Saxenda®-treated patients reported adverse events of cholelithiasis versus 3.0% of placebo-treated patients. The incidence of cholelithiasis was 0.8% in Saxenda®-treated patients versus 4.3% in placebo-treated patients. The majority of Saxenda®-treated patients with adverse events of cholelithiasis required cholecystectomy. Substantial or rapid weight loss can increase the risk of cholelithiasis; however, the incidence of acute gallbladder disease was greater in Saxenda®-treated patients than in placebo-treated patients even after adjustment for degree of weight loss. Cholecystitis is suspected, gallbladder studies and appropriate clinical follow-up are indicated.

5.4 Risk for Hypoglycemia with Concomitant Use of Anti-Diabetic Therapy

The risk for serious hypoglycemia is increased when Saxenda® is used in combination with insulin secretagogues (for example, sulfonylureas) in patients with type 2 diabetes mellitus. Therefore, patients may require a lower dose of sulfonylurea (or other concomitantly administered anti-diabetic drug) in this setting (see Dosage and Administration) and may not reflect the rates observed in practice. Saxenda® was evaluated for safety in 5 double-blind, placebo controlled trials that included 3384 overweight or obese patients treated with Saxenda® for a treatment duration of up to 52 weeks (3 trials), 52 weeks (1 trial), and 32 weeks (1 trial). All patients received study drug as an adjunct to diet and exercise counseling. In these trials, patients received Saxenda® for a mean treatment duration of 46 weeks (median, 56 weeks). Baseline characteristics included a mean age of 47 years, 71% women, 85% white, 39% with hypertension, 15% with type 2 diabetes, 34% with dyslipidemia, 29% with a BMI greater than 40 kg/m², and 9% with cardiovascular disease. In one of the 56-week trials, a subset of patients with abnormal glucose measurements at randomization (see Clinical Studies (6.7)) were enrolled for a placebo-controlled 160-week period instead. Followed by a 12-week off-treatment follow-up. For those participating in this 160-week period, patients received Saxenda® for a mean treatment duration of 110 weeks (median, 159 weeks). For all trials, dosage was initiated and increased weekly to reach the 3 mg dose.

In clinical trials, 9.8% of patients treated with Saxenda® and 4.3% of patients treated with placebo prematurely discontinued treatment as a result of adverse reactions. The most common adverse reactions leading to discontinuation were nausea (2.9% versus 0.2% for Saxenda® and placebo, respectively), vomiting (1.7% versus less than 0.1%), and diarrhea (1.4% versus 0%).

Adverse reactions reported in greater than or equal to 2% of Saxenda®-treated patients and more frequently than in placebo-treated patients are shown in Table 3.

Table 3. Adverse Reactions Reported in Greater Than or Equal to 2% of Saxenda®-treated Patients and More Frequently than with Placebo

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda® N = 3384</th>
<th>Placebo N = 1941</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>13.8%</td>
<td>39.3%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9.9%</td>
<td>20.9%</td>
</tr>
<tr>
<td>Constipation</td>
<td>8.5%</td>
<td>19.4%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3.9%</td>
<td>15.7%</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>2.7%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>3.7%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Upper Abdominal Pain</td>
<td>2.7%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Gastrospphalg Reflux Disease</td>
<td>1.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Abdominal Distension</td>
<td>3.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Eruption</td>
<td>0.2%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Flatulence</td>
<td>2.5%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>1.0%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Metabolism and Nutrition Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Saxenda® 12.7</th>
<th>Placebo 23.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased Appetite</td>
<td>2.3</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Nervous System Disorders

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>12.6%</td>
<td>13.6%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>5.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

General Disorders and Administration Site Conditions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>4.6%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Injection Site Erythema</td>
<td>0.2%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Injection Site Reaction</td>
<td>0.6%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Asthenia</td>
<td>0.8%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Infections and Infestations

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastroenteritis</td>
<td>3.2</td>
<td>4.7%</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>3.1</td>
<td>4.3%</td>
</tr>
<tr>
<td>Viral Gastroenteritis</td>
<td>1.6</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Lipase</td>
<td>2.2%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Psychiatric Disorders

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Saxenda®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insomnia</td>
<td>1.7%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1.6%</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

* Documented systematic (defined as documented symptoms of hypoglycemia in combination with a plasma glucose less than or equal to 70 mg/dL, in patients with type 2 diabetes mellitus).

† See text below for further information regarding hypoglycemia in patients with and without type 2 diabetes. T2DM = type 2 diabetes mellitus

Hypoglycemia

Saxenda® can lower blood glucose. In a clinical trial involving patients with type 2 diabetes mellitus and overweight or obesity, patients receiving Saxenda® (defined as requiring the assistance of another person) occurred in 3 (0.7%) of 422 Saxenda®-treated patients and in none of the 212 placebo-treated patients. Each of these 3 Saxenda®-treated patients was also taking a sulfonylurea. In the same trial, among patients taking a sulfonylurea, documented symptomatic hypoglycemia (defined as documented symptoms of hypoglycemia in combination with a plasma glucose less than or equal to 70 mg/dL) occurred in 48 (43.6%) of 110 Saxenda®-treated patients and 15 (27.3%) of 55 placebo-treated patients. The doses of sulfonylureas were reduced by 50% at the beginning of the trial per protocol. The frequency of hypoglycemia may be higher if the patient is taking a sulfonylurea, documented symptomatic hypoglycemia occurred in 49 (15.7%) of 312 Saxenda®-treated patients and 12 (7.6%) of 157 placebo-treated patients.

In Saxenda® clinical trials involving patients without type 2 diabetes mellitus, there was no systematic capturing or reporting of hypoglycemic events. Patients were not provided with blood glucose meters or hypoglycemia diaries. Spontaneously reported symptomatic episodes of unconfirmed hypoglycemia were reported by 4 (1.6%) of 296 Saxenda®-treated patients and 19 (1.1%) of 1729 placebo-treated patients. Fasting plasma glucose values obtained at routine clinical visits less than or equal to 70 mg/dL, irrespective of hypoglycemic symptoms, were reported as “hypoglycemia” in 92 (3.1%) Saxenda®-treated patients and 13 (0.8%) placebo-treated patients.

Gastrointestinal Adverse Reactions

In the clinical trials, approximately 68% of Saxenda®-treated patients and 39% of placebo-treated patients reported gastrointestinal disorders; the most frequently reported was nausea (39% and 14% of patients treated with Saxenda® and placebo, respectively). The percentage of patients reporting nausea declined as treatment continued. Other common adverse reactions that occurred at a higher incidence among Saxenda®-treated patients included diarrhea, constipation, vomiting, dyspepsia, abdominal pain, dry mouth, gas, malaise, and upper abdominal distention in 4 (2.2%) of 1843 placebo-treated patients. Fasting plasma glucose values obtained at routine clinical visits less than or equal to 70 mg/dL, irrespective of hypoglycemic symptoms, were reported as “hypoglycemia” in 92 (3.1%) Saxenda®-treated patients and 13 (0.8%) placebo-treated patients.
Saxenda® (liraglutide) injection

Immuneogenicity

Patients treated with Saxenda® may develop anti-liraglutide antibodies. Anti-liraglutide antibodies were detected in 42 (2.8%) of 1505 Saxenda®-treated patients with a post-baseline assessment. Antibodies that had a neutralizing effect on liraglutide in an in vitro assay occurred in 18 (1.2%) of 1505 Saxenda®-treated patients. Presence of antibodies may be associated with a higher incidence of injection site reactions and reports of low blood glucose. In clinical trials, these events were usually classified as mild and resolved while patients continued on treatment.

The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparisons of the incidence of antibodies in one study may not be meaningful in another. The clinical significance or clinical importance of positive antibody assay results is uncertain.

Laboratory Abnormalities

Liver Enzymes

Increases in alanine aminotransferase (ALT) greater than or equal to 10 times the upper limit of normal were seen in 5 (0.15%) Saxenda®-treated patients (two of whom had ALT greater than 40 and 40 times the upper limit of normal) compared with 1 (0.05%) placebo-treated patient during the Saxenda® clinical trials. Because clinical evaluation to exclude alternative causes of ALT and aspartate aminotransferase (AST) increases was not done in most cases, the clinical significance of these findings is uncertain. Some increases in ALT and AST were associated with other confounding factors (such as gallstones).

Serum Calcitonin

Calcitonin, a biological marker of MTC, was measured throughout the clinical development program (see Warnings and Precautions (5.1) and Adverse Reactions (6.1)). In the clinical trials were observed to have high calcitonin values during treatment, compared with placebo. The proportion of patients with calcitonin greater than or equal to 2 times the upper limit of normal at the end of the trial was 2.5% of Saxenda®-treated patients and 0.2% of placebo-treated patients; among patients with pre-treatment serum calcitonin less than 20 ng/mL, none had calcitonin elevations greater than 50 ng/mL at the end of the trial.

Serum Lipase and Amylase

Serum lipase and amylase were routinely measured in the Saxenda® clinical trials. Among Saxenda®-treated patients, 2.1% had a lipase value at anytime during treatment of greater than or equal to 3 times the upper limit of normal compared with 1.0% of placebo-treated patients. Among Saxenda®-treated patients with an amylase value at anytime in the trial of greater than or equal to 3 times the upper limit of normal versus 0.1% of placebo-treated patients. The clinical significance of elevations in lipase or amylase with Saxenda® is unknown in the absence of other signs and symptoms of pancreatitis (see Warnings and Precautions (5.2)).

6.2 Post-Marketing Experience

The following adverse reactions have been reported during post-approval use of liraglutide, the active ingredient of Saxenda®. It is unknown whether these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Neoplasms

Medullary thyroid carcinoma (see Warnings and Precautions (5.1) and Adverse Reactions (6.1))

Gastrointestinal Disorders

Acute pancreatitis, hemorrhagic and necrotizing pancreatitis, affect the abdominal wall (see Warnings and Precautions (5.2))

Metabolism and Nutrition Disorders

Dehydration resulting from nausea, vomiting and diarrhea (see Adverse Reactions (6.1))

Renal and Urinary Disorders

Increased serum creatinine, acute renal failure or worsening of chronic renal failure, sometimes requiring hemodialysis (see Warnings and Precautions (5.5))

General Disorders and Administration Site Conditions

Allergic reactions: rash and pruritus (see Adverse Reactions (6.1))

Immunologic Disorders

Angioedema and anaphylactic reactions (see Warnings and Precautions (5.7))

Hepatobiliary Disorders

Elevations of liver enzymes, hyperbilirubinemia, cholelithiasis and hepatitis (see Adverse Reactions (6.1))

7.1 Drug Interactions

Saxenda® causes a delay of gastric emptying, and thereby has the potential to impact the absorption of concomitantly administered oral medications. In clinical pharmacology trials, liraglutide did not affect the absorption of losartan or theophylline administered medications to any clinically relevant degree. Nonetheless, monitor for potential consequences of delayed absorption of oral medications concomitantly administered with Saxenda®.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

SAXENDA® is contraindicated during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in fetal harm (see Clinical Considerations). There are no available data with liraglutide in pregnant women to inform a drug risk classification during pregnancy. SAXENDA® should not be used during pregnancy. If a patient wishes to become pregnant, or pregnancy occurs, treatment with SAXENDA® should be discontinued.

Animal data

Liraglutide has been shown to be teratogenic in rats at or above 0.8-times systemic exposures in obese humans resulting from the median recommended human dose (MRHD) of 3 mg/day based on plasma area under the time-concentration curve (AUC) comparison. Liraglutide has been shown to cause reduced growth and increased total major abnormalities in rabbits at systemic exposures below exposure in obese humans at the MRHD based on plasma AUC comparison.

Female rats given subcutaneous doses of 0.1, 0.25 and 1 mg/kg/day liraglutide beginning 2 weeks before mating through gestation day 17 had estimated systemic exposures 0.8-, 3-, and 11-times the exposure in obese humans at the MRHD based on plasma AUC comparison. In the offspring born in this study, fetal abnormalities were observed in the 1 mg/kg/day group; no abnormalities were seen in the 0.1 mg/kg/day group. It is unknown whether the abnormalities observed in the 1 mg/kg/day group were related to liraglutide treatment. Liraglutide dose-dependently increased the incidence of fetal malformations in rats; no additional malformations were observed in the 0.1 mg/kg/day group compared to control.

Pregnant rabbits given subcutaneous doses of 0.01, 0.025 and 0.05 mg/kg/day liraglutide from gestation day 6 through day 18 inclusive, had estimated systemic exposures less than the exposure in obese humans at the MRHD of 3 mg/day at all doses, based on plasma AUC comparison. Liraglutide decreased fetal weight and dose-dependently increased the incidence of total major fetal abnormalities at all doses. The incidence of malformations exceeded concurrent and historical controls at 0.01 mg/kg/day (kneys, scapula), greater than or equal to 0.01 mg/kg/day (eyes, forelimb), 0.025 mg/kg/day (brain, tail and sacral vertebrae, major blood vessels and heart, umbilicus), greater than or equal to 0.025 mg/kg/day (long bone, skull, kidneys and blood vessels, irregular ossification of the skull, and a more complete state of ossification occurred at all doses. Motted liver and minimally kinked ribs occurred at the highest dose. The incidence of fetal malformations exceeded concurrent and historical controls at 0.01 mg/kg/day (kidneys, scapula), greater than or equal to 0.01 mg/kg/day (eyes, forelimb), 0.025 mg/kg/day (brain, tail and sacral vertebrae, major blood vessels and heart, umbilicus), greater than or equal to 0.025 mg/kg/day (long bone, skull, kidneys and blood vessels, irregular ossification of and/or skeletal abnormalities occurred in the skull and jaw, vertebrae and ribs, sternum, pelvis, tail, and scapula; and dose-dependent minor skeletal variations were seen in the tibia, ribs, scapula, pelvis and umbilicus). Oral administration of liraglutide to generation rats descended from liraglutide-treated rats resulted in growth retardation, an imbalance in some fetal abnormalities in pregnant rats treated with the MRHD of 3 mg/day. In pregnant rabbits administered liraglutide at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day, in pregnant rabbits administered liraglutide at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day, in pregnant rabbits administered liraglutide at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day, in pregnant rabbits administered liraglutide at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day, in pregnant rabbits administered liraglutide at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day.
8.4 Pediatric Use
Safety and effectiveness of Saxenda® have not been established in pediatric patients. Saxenda® is not recommended for use in pediatric patients.

8.5 Geriatric Use
In the Saxenda® clinical trials, 232 (6.9%) of the Saxenda®-treated patients were 65 years of age and over, and 17 (0.5%) of the Saxenda®-treated patients were 75 years of age and over. No overall differences in safety or effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

8.6 Renal Impairment
There is limited experience with Saxenda® in patients with mild, moderate, and severe renal impairment, including end-stage renal disease. However, there have been postmarketing reports of acute renal failure and worsening of chronic renal failure with liraglutide, which may sometimes require hemodialysis (see Warnings and Precautions (5.6) and Adverse Reactions (6.2)). Saxenda® should be used with caution in this patient population (see Clinical Pharmacology (12.9)).

8.7 Hepatic Impairment
There is limited experience in patients with mild, moderate, or severe hepatic impairment. Therefore, Saxenda® should be used with caution in this patient population (see Clinical Pharmacology (12.9)).

8.8 Gastroesophageal Reflux Disease (GERD)
Saxenda® slows gastric emptying. Saxenda® has not been studied in patients with pre-existing gastrolesophageal reflux disease.

10 OVERDOSAGE
Overdoses have been reported in clinical trials and post-marketing use of liraglutide. Effects have included severe nausea and severe vomiting. The event of overdose, appropriate supportive treatment should be initiated according to the patient’s clinical signs and symptoms.

11 DESCRIPTION
Saxenda® contains liraglutide, an analog of human GLP-1 and acts as a GLP-1 receptor agonist. The peptide precursor of liraglutide, produced by a process that includes expression of recombinant DNA in Saccharomyces cerevisiae, has been engineered to be 97% homologous to native human GLP-1 by substituting arginine for lysine at position 34. Liraglutide is made by attaching a C-16 fatty acid (palmitic acid) with a glucamic acid spacer on the remaining lysine residue at position 34 to produce the peptide precursor. The molecular formula of liraglutide is C₁₇₁H₃₇₅O₇₄N₃₂S₃ and the molecular weight is 3751.2 Daltons. The structural formula (Figure 1) is:

![Figure 1. Structural Formula of liraglutide](image)

Saxenda® is a clear, colorless solution. Each 1 mL of Saxenda® solution contains 6 mg of liraglutide and the following inactive ingredients: disodium phosphate dihydrate, 1.42 mg; propylene glycol, 14 mg; phenol, 5.5 mg; and water for injection. Each pre-filled pen contains a 3 mL solution of Saxenda® equivalent to 18 mg liraglutide (free-base, anhydrous).

12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
Liraglutide is an acylated human glucagon-like peptide-1 (GLP-1) receptor agonist with 97% amino acid sequence homology to endogenous human GLP-1 (7-37). Like endogenous GLP-1, liraglutide binds to and activates the GLP-1 receptor, a cell-surface receptor coupled to adenyl cyclase activation through the stimulatory G-protein, GS. Endogenous GLP-1 has a half-life of approximately 2 minutes due to degradation by the ubiquitous endogenous enzymes, dipeptidyl peptidase 4 (DPP-4) and neutral endopeptidases (NEP). Unlike native GLP-1, liraglutide is stable against metabolic degradation by both peptides and has a plasma half-life of 13 hours after subcutaneous administration. The pharmacokinetic profile of liraglutide, which makes it suitable for once-daily administration, is a result of self-association that delays absorption, plasma protein binding, and stability against metabolic degradation by DPP-4 and NEP.

GLP-1 is a physiological regulator of appetite and calorie intake, and the GLP-1 receptor is present in several areas of the brain involved in appetite regulation. In animal studies, peripheral administration of liraglutide resulted in the presence of liraglutide in specific brain regions regulating appetite, including the hypothalamus. Although liraglutide activated neurons in brain regions known to regulate appetite, specific brain regions mediating the effects of liraglutide on appetite were not identified in rats.

12.2 Pharmacodynamics
Liraglutide lowers body weight through decreased calorie intake. Liraglutide is the first GLP-1 receptor agonist for the treatment of obesity to demonstrate body weight loss in clinical trial settings. As with other GLP-1 receptor agonists, liraglutide stimulates insulin secretion and reduces glucagon secretion in a glucose-dependent manner. These effects can lead to a reduction of blood glucose.

Cardiac Electrophysiology (QTc) in healthy volunteers
The effect of liraglutide on cardiac repolarization was tested in a QTc study. Liraglutide at steady-state concentrations after daily doses times the Cmax was 0.08-0.14 mg/mL for liraglutide plasma concentration (Cmax) in overweight and obese subjects treated with liraglutide 3 mg is similar to the Cmax observed in the liraglutide QTc study in healthy volunteers.

12.3 Pharmacokinetics
Figures 2A, 2B show the pharmacokinetic profile of liraglutide after subcutaneous administration, maximum concentrations of liraglutide are achieved at 11 hours post dosing. The average liraglutide steady state concentration (AUC0-∞) reached approximately 116 ng/mL in obese (BMI 30-40 kg/m²) subjects following administration of Saxenda®. Liraglutide exposure increased proportionally in the dose range of 0.6 mg to 3 mg. The intra-subject coefficient of variation for liraglutide AUC was 11% following single dose administration. Liraglutide exposures were similar among three subcutaneous injection sites (upper arm, lateral thigh, and abdomen). Absolute bioavailability of liraglutide following subcutaneous administration is approximately 55%.

Distribution - The mean apparent volume of distribution after subcutaneous administration of liraglutide 3 mg is 20-25 L (for a person weighing approximately 100 kg). The mean volume of distribution at steady state of liraglutide is 120 L/kg with liraglutide exposure directly proportional to dose.

Metabolism - During the initial 24 hours following administration of a single [3H]-liraglutide dose to healthy subjects, the major components of the plasma radioactivity were liraglutide and a liraglutide-related metabolite with metabolites in urine or feces (6% and 5%, respectively). The majority of urine and feces radioactivity was excreted during the first 6-8 days. The mean apparent clearance following subcutaneous administration of a single dose of liraglutide is approximately 0.9-1.4 L/h with an elimination half-life of approximately 13 hours, making liraglutide suitable for once daily administration.

Specific Populations
Elderly - No dosage adjustment is required based on age. Age had no effect on the pharmacokinetics of liraglutide based on a pharmacokinetic analysis of healthy elderly subjects (65 to 83 years) and population pharmacokinetic analyses of data from overweight and obese patients 18 to 82 years of age (see Use in Specific Populations (8.5)).

Gender - Based on the results of population pharmacokinetic analyses, females have 24% lower weight adjusted clearance of Saxenda® compared to males. Based on the exposure response data, no dose adjustment is necessary based on gender.

Race and Ethnicity - Race and ethnicity had no effect on the pharmacokinetics of liraglutide based on the results of population pharmacokinetic analyses conducted in patients with body weight range of 60-234 kg. The exposure of liraglutide decreases as baseline body weight decreases.

Pediatric - Saxenda® has not been studied in pediatric patients (see Use in Specific Populations (8.4)).

Renal Impairment - The single-dose pharmacokinetics of liraglutide were evaluated in subjects with varying degrees of renal impairment. Subjects with 50% to 80% creatinine clearance 50-80 mL/min to severe (estimated creatinine clearance less than 30 mL/min) renal impairment and subjects with end-stage renal disease requiring dialysis were included in the trial. Compared to healthy subjects, liraglutide AUC in mild, moderate, and severe renal impairment and subjects with end-stage renal disease requiring dialysis was on average 15%, 26%, and 30% lower, respectively (see Use in Specific Populations (8.6)).

Hepatic Impairment - The single-dose pharmacokinetics of liraglutide were evaluated in subjects with varying degrees of hepatic impairment. Subjects with mild (Child Pugh score 5-6) to severe (Child Pugh score greater than 9) hepatic impairment were included in the trial. Compared to healthy subjects, liraglutide AUC in subjects with mild, moderate and severe hepatic impairment was on average 11%, 14% and 42% lower, respectively (see Use in Specific Populations (8.7)).

Drug Interactions
In vitro assessment of drug–drug interactions
Liraglutide has low potential for pharmacokinetic drug-drug interactions related to cytochrome P450 (CYP) and plasma protein binding and is not expected to have a clinically significant effect on drug interactions.
AUC comparison. A treatment-related increase in benign thyroid C-cell adenomas was seen in males in 0.25 and 0.75 mg/kg/day liraglutide groups with incidences of 12%, 16%, 42%, and 46% and in all female liraglutide-treated groups with incidences of 10%, 27%, 33%, and 55%, respectively. In 0.25, 0.75, and 0.75 mg/kg/day groups, respectively. A treatment-related increase in malignant thyroid C-cell carcinomas was observed in all male liraglutide-treated groups with incidences of 2%, 6%, 6%, and 14% and in females at 0.25 and 0.75 mg/kg/day with incidences of 0%, 0.7%, 4%, and 6% in 0 (control), 0.075, 0.25, and 0.75 mg/kg/day groups, respectively. Thyroid C-cell carcinomas are rare findings during carcinogenicity testing in rats.

Studies in mice demonstrated that liraglutide-induced C-cell proliferation was dependent on GLP-1 receptor and that liraglutide did not cause activation of the RERearranged during Transfection (RET) proto-oncogene in thyroid C-cells.

Human relevance of thyroid C-cell tumors in mice and rats is unknown and has not been determined by clinical studies or nonclinical studies [See Boxed Warning and Warnings and Precautions (1.1)].

Liraglutide was negative with and without metabolic activation in the Ames test for mutagenicity and in a human peripheral blood lymphocyte chromosome aberration test for clastogenicity. Liraglutide was negative in repeat-dose in vivo micronucleus tests in rats.

In rat fertility studies using subcutaneous doses of 0.1, 0.25 and 1 mg/kg/day liraglutide, males were treated for 4 weeks prior to and throughout mating and females were treated 2 weeks prior to and throughout mating until gestation day 17. No direct adverse effects on male fertility were observed at doses up to 1 mg/kg/day, a high dose yielding an estimated systemic exposure 11-times the exposure in obese humans at the MRHD, based on plasma AUC comparison. In female rats, an increase in early embryonic deaths occurred at 1 mg/kg/day. Reduced body weight gain and food consumption were observed in females at the 1 mg/kg/day dose.

14 CLINICAL STUDIES

The safety and efficacy of Saxenda® for chronic weight management in conjunction with reduced caloric intake and increased physical activity were studied in three 56-week, randomized, double-blind, placebo-controlled trials. In all studies, Saxenda® was titrated to 3 mg daily during a 4-week period. All patients received instruction for a reduced caloric diet (approximately 500 kcal/day deficit) and exercise counseling (recommended increase in physical activity of a minimum 150 min/week) that began with the first dose of study medication or placebo and continued throughout the trial.

Study 1 enrolled 3731 patients with obesity (BMI greater than or equal to 30 kg/m²) or with overweight (BMI 27.9-29.9 kg/m²) and at least one weight-related comorbid condition such as treated or untreated dyslipidemia or hypertension; patients with type 2 diabetes mellitus were excluded. Patients were stratified in a 2:1 ratio to either Saxenda® or placebo. Patients were stratified based on the presence or absence of abnormal blood glucose measurements at randomization. All patients were treated for up to 56 weeks. Those patients with abnormal glucose measurements at randomization (2254 of the 3731 patients) were treated for a total of 160 weeks. Patients were randomized in a 2:1 ratio to either Saxenda® or placebo:

- Saxenda® Placebo

N=4287 N=1244

Percent change from baseline (LSMean)

Difference from placebo (LSMean)

% of Patients losing greater than or equal to 5% body weight

Difference from placebo (LSMean)

% of Patients losing greater than or equal to 10% body weight

Difference from placebo (LSMean)

SD = Standard Deviation; CI = Confidence Interval

*p < 0.0001 compared to placebo. Type 1 error was controlled across the three endpoints.

Includes all randomized subjects who had a baseline body weight measurement. All available body weight data during the 56 week treatment period are included in the analysis. In Studies 1 and 2 missing values for week 56 were handled using multiple imputations analysis. In Study 3 missing values for week 56 were handled using weighted regression analysis.

The cumulative frequency distributions of change in body weight from baseline to week 56 are shown in Figure 2 for Studies 1 and 2. One way to interpret this figure is to select a change in body weight of interest on the horizontal axis and note the corresponding proportions of patients (vertical axis) in each treatment group who achieved at least that degree of weight loss. For example, note that the vertical line arising from -10% in Study 1 intersects the Saxenda® and placebo curves at approximately 34% and 15%, respectively, which correspond to the values shown in Table 4.

Figure 2. Change in body weight (%) from baseline to week 56 (Study 1 on left and Study 2 on right)

The time courses of weight loss with Saxenda® and placebo from baseline through week 56 are depicted in Figures 3 and 4.

Figure 3. Change from baseline (%) in body weight (Study 1 on left and Study 2 on right)
2.4 The pen can be stored for 30 days in the freezer or directly adjacent to the refrigerator cooling element. Do not store in the freezer or in a refrigerator (36°F to 46°F; 2°C to 8°C). Keep the pen cap on when not in use. Saxenda® should be protected from excessive heat and sunlight. Always remove and safely discard the needle after each injection and store the Saxenda® pen without an injection needle attached. This will reduce the potential for contamination, infection, and leakage while also ensuring dosing accuracy.

Effect of Saxenda® on Body Weight in a 160-week Trial (Study 1, Subset of Patients with Abnormal Blood Glucose at Randomization)

The numbers and percentages of patients known to have lost greater than or equal to 5% body weight at week 56 and/or week 160 in Study 1 (patients with abnormal glucose at randomization only) are summarized in Table 5 for descriptive purposes.

Table 5. Changes in Weight at Week 56 and Week 160 for Study 1 (Subset of Patients with Abnormal Blood Glucose at Randomization)

<table>
<thead>
<tr>
<th>Baseline mean body weight (SD) (kg)</th>
<th>Saxenda® N = 1505</th>
<th>Placebo N = 749</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight by 56 weeks</td>
<td>817 (55%)</td>
<td>182 (25%)</td>
</tr>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight by 160 weeks</td>
<td>424 (28%)</td>
<td>102 (14%)</td>
</tr>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight at both 56 weeks and 160 weeks</td>
<td>391 (27%)</td>
<td>74 (10%)</td>
</tr>
<tr>
<td>Number (%) of patients with weight assessment at 160 weeks</td>
<td>747 (50%)</td>
<td>322 (43%)</td>
</tr>
</tbody>
</table>

SD = Standard Deviation

Includes all randomized subjects who had a baseline body weight measurement. All available body weight data at 56 and 160 weeks are included in the analysis.

Effect of Saxenda® on Anthropometry and Cardiometabolic Parameters in 56-week Trials

Changes in waist circumference and cardiometabolic parameters with Saxenda® are shown in Table 6 for Study 1 (patients without diabetes mellitus) and Table 7 for Study 2 (patients with type 2 diabetes). Results from Study 3, which also enrolled patients without diabetes mellitus, were similar to Study 1.

Table 6. Mean Changes in Anthropometry and Cardiometabolic Parameters in Study 1 (Patients without Diabetes)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Saxenda® N = 2487</th>
<th>Placebo N = 1244</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waist Circumference (cm)</td>
<td>115.0</td>
<td>114.5</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mmHg)</td>
<td>123.0</td>
<td>123.3</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mmHg)</td>
<td>78.7</td>
<td>78.9</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>71.4</td>
<td>71.3</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>193.8</td>
<td>194.4</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>111.8</td>
<td>112.3</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>51.4</td>
<td>50.9</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>125.7</td>
<td>128.3</td>
</tr>
</tbody>
</table>

Based on last observation carried forward method while on study drug

1 Least squares mean adjusted for treatment, country, sex, pre-diabetes status at screening, baseline BMI stratum and an interaction between pre-diabetes status at screening and BMI stratum as fixed factors, and the baseline value as covariate.

2 Baseline value is the geometric mean

3 Values are baseline median, median % change, and the Hodges-Lehmann estimate of the median treatment difference.

Table 7. Mean Changes in Anthropometry and Cardiometabolic Parameters in Study 2 (Patients with Diabetes Mellitus)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Saxenda® N = 423</th>
<th>Placebo N = 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waist Circumference (cm)</td>
<td>118.1</td>
<td>117.3</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mmHg)</td>
<td>128.9</td>
<td>129.2</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mmHg)</td>
<td>79.0</td>
<td>79.3</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>74.0</td>
<td>74.0</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>177.0</td>
<td>169.4</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>86.4</td>
<td>85.2</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>45.2</td>
<td>45.4</td>
</tr>
<tr>
<td>% Change from Baseline (LSMean)</td>
<td>156.2</td>
<td>155.8</td>
</tr>
</tbody>
</table>

Based on last observation carried forward method while on study drug

1 Least squares mean adjusted for treatment, country, sex, background treatment, baseline HbA1c stratum and an interaction between background treatment and HbA1c stratum as fixed factors, and the baseline value as covariate.

2 Baseline value is the geometric mean

3 Values are baseline median, median % change, and the Hodges-Lehmann estimate of the median treatment difference.

Table 8. Recommended Storage Conditions for Saxenda®

<table>
<thead>
<tr>
<th>Condition</th>
<th>Saxenda®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerated</td>
<td>36°F to 46°F (2°C to 8°C)</td>
</tr>
<tr>
<td>Room Temperature</td>
<td>59°F to 86°F (15°C to 30°C)</td>
</tr>
</tbody>
</table>

Until expiration date: 30 days

17 PATIENT COUNSELING INFORMATION

FDA-Approved Medication Guide

Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use).

Instructions

Saxenda® is indicated for chronic weight management in adults with obesity who have not lost at least 5% of their body weight while on a weight reduction program for two years. Patients should be instructed to follow the dose escalation schedule and not to exceed the recommended dose of Saxenda®.

Advise patients to take Saxenda® exactly as prescribed. Patients should be instructed to follow the escalation schedule and take the recommended dose. Patients should be advised to discontinue Saxenda® if they have not achieved 4% weight loss by 16 weeks of treatment.

Risk of Thyroid C-cell Tumors

Inform patients that liraglutide causes benign and malignant thyroid C-cell tumors in animals. Explain the potential risk for acute pancreatitis. Patients should be instructed to contact their physician if they experience symptoms of diabetes, hypoglycemia, or thyroid C-cell tumors. Counsel patients to report symptoms of thyroid tumors (e.g., a lump in the neck, hoarseness, dysphagia or dyspnea) to their physician (see Boxed Warning and Precautions (5.1)).

Acute Pancreatitis

Patients should be advised of the potential risk for acute pancreatitis. Explain that persistent severe abdominal pain that may radiate to the back and which may or may not be accompanied by vomiting, is the hallmark symptom of acute pancreatitis. Instruct patients to contact Saxenda® promptly and contact their physician if persistent severe abdominal pain occurs.

Acute Gallbladder Disease

Patients should be informed that substantial or rapid weight loss can increase the risk of cholecystitis. Cholecystitis may also occur in the absence of substantial or rapid weight loss. Patients should be instructed to contact their physician if cholecystitis is suspected for appropriate clinical follow-up.

Hypoglycemia in Patients with Type 2 Diabetes Mellitus on Anti-Diabetic Therapy

Patients with type 2 diabetes mellitus on anti-diabetic therapy should be advised to monitor their blood glucose levels and report symptoms of hypoglycemia to their physician.

Heart Rate Increase

Patients should be informed to report symptoms of sustained periods of heart pounding or racing while at rest to their physician. Patients who experience a sustained increase in resting heart rate while taking Saxenda®, Saxenda® should be discontinued.

Dehydration and Renal Impairment

Patients treated with Saxenda® should be advised of the potential risk of dehydration due to gastrointestinal adverse reactions and take precautions to avoid fluid depletion. Patients should be informed of the potential risk for worsening renal function, which in some cases may require dialysis.

Hypersensitivity Reactions

Patients should be informed that serious hypersensitivity reactions have been reported during use of liraglutide. If symptoms of hyper-
sensitivity reactions occur, patients must stop taking Saxenda® and seek medical advice promptly.

Suicidal Behavior and Ideation
Patients treated with Saxenda™ should be advised to report emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Patients should be informed that if they experience suicidal thoughts or behaviors, Saxenda™ should be discontinued.

Jaundice and Hepatitis
Inform patients that jaundice and hepatitis have been reported during postmarketing use of liraglutide. Instruct patients to contact their physician if they develop jaundice.

Never Share a Saxenda® Pen Between Patients
Patients should be informed that they should never share a Saxenda® pen with another person, even if the needle is changed. Sharing of the pen between patients may pose a risk of transmission of infection.
Tell your healthcare provider if you get a lump or swelling in your neck, hoarseness, trouble swallowing, or shortness of breath. These may be symptoms of thyroid cancer. In studies with rats and mice, Saxenda® and medicines that work like Saxenda® caused thyroid tumors, including thyroid cancer. It is not known if Saxenda® will cause thyroid tumors or a type of thyroid cancer called medullary thyroid carcinoma (MTC) in people.

Do not use Saxenda® if you or any of your family have ever had a type of thyroid cancer called medullary thyroid carcinoma (MTC), or if you have an endocrine system condition called Multiple Endocrine Neoplasia syndrome type 2 (MEN 2).

What is Saxenda®?

Saxenda® is an injectable prescription medicine that may help some obese or overweight adults who also have weight related medical problems lose weight and keep the weight off.

- Saxenda® should be used with a reduced calorie diet and increased physical activity.
- Saxenda® is not for the treatment of type 2 diabetes mellitus.
- Saxenda® and Victoza® have the same active ingredient, liraglutide.
- Saxenda® and Victoza® should not be used together.
- Saxenda® should not be used with other GLP-1 receptor agonist medicines.
- Saxenda® and insulin should not be used together.
- It is not known if Saxenda® is safe and effective when taken with other prescription, over-the-counter, or herbal weight loss products.
- It is not known if Saxenda® changes your risk of heart problems or stroke or of death due to heart problems or stroke.
- It is not known if Saxenda® can be used safely in people who have had pancreatitis.
- It is not known if Saxenda® is safe and effective in children under 18 years of age. Saxenda® is not recommended for use in children.

Who should not use Saxenda®?

Do not use Saxenda® if:

- you or any of your family have a history of medullary thyroid carcinoma.
- you have Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). This is a disease where people have tumors in more than one gland in their body.
- you are allergic to liraglutide or any of the ingredients in Saxenda®. See the end of this Medication Guide for a complete list of ingredients in Saxenda®.
- Symptoms of a serious allergic reaction may include:
 - swelling of your face, lips, tongue, or throat
 - fainting or feeling dizzy
 - very rapid heartbeat
 - problems breathing or swallowing
 - severe rash or itching
- you are pregnant or planning to become pregnant. Saxenda® may harm your unborn baby. Tell your healthcare provider if you become pregnant while taking Saxenda®. If you are pregnant you should stop using Saxenda®.
- you are breastfeeding or plan to breastfeed. It is not known if Saxenda® passes into your breast milk. You and your healthcare provider should decide if you will take Saxenda® or breastfeed. You should not do both without talking with your healthcare provider first.

Before taking Saxenda®, tell your healthcare provider about all of your medical conditions, including if you:

- have any of the conditions listed in the section “What is the most important information I should know about Saxenda®?”
- are taking certain medications called GLP-1 receptor agonists.
- are allergic to liraglutide or any of the other ingredients in Saxenda®. See the end of this Medication Guide for a list of ingredients in Saxenda®.
- have severe problems with your stomach, such as slowed emptying of your stomach (gastroparesis) or problems with digesting food.
- have or have had problems with your pancreas, kidneys or liver.
- have or have had depression or suicidal thoughts.
- are pregnant or plan to become pregnant. Saxenda® may harm your unborn baby. Tell your healthcare provider if you become pregnant while taking Saxenda®. If you are pregnant you should stop using Saxenda®.
- are breastfeeding or plan to breastfeed. It is not known if Saxenda® passes into your breast milk. You and your healthcare provider should decide if you will take Saxenda® or breastfeed. You should not do both without talking with your healthcare provider first.

Tell your healthcare provider about all the medicines you take including prescription and over-the-counter medicines, vitamins, and herbal supplements. Saxenda® slows stomach emptying and can affect medicines that need to pass through the stomach quickly. Saxenda® may affect the way some medicines work and some other medicines may affect the way Saxenda® works. Tell your healthcare provider if you take diabetes medicines, especially sulfonylurea medicines or insulin.

How should I use Saxenda®?

- Use Saxenda® exactly as prescribed by your healthcare provider. Your dose should be increased after using Saxenda® for 1 week until you reach the 3 mg dose. After that, do not change your dose unless your healthcare provider tells you to.
- Saxenda® is injected 1 time each day, at any time during the day.
- You can take Saxenda® with or without food.
- Your healthcare provider should start you on a diet and exercise program when you start taking Saxenda®. Stay on this program while you are taking Saxenda®.
- Saxenda® comes in a prefilled pen.
- Your healthcare provider must teach you how to inject Saxenda® before you use it for the first time. If you have questions or do not understand the instructions, talk to your healthcare provider or pharmacist. Read the Patient Instructions for Use that come with this Medication Guide for detailed information about the right way to use your Saxenda® pen.
- Pen needles are not included. Use the Saxenda® pen with Novo Nordisk disposable needles. You may need a prescription to get pen needles from your pharmacist. Ask your healthcare provider which needle size is best for you.
- When starting a new prefilled Saxenda® pen, you must follow the “Check the Saxenda® flow with each new pen” (see the detailed Patient Instructions for Use that comes with this Medication Guide). You only need to do this 1 time with each new pen. You should also do this if you drop your pen. If you do the “Check the Saxenda® flow with each new pen” before each injection, you will run out of medicine too soon.
- Inject your dose of Saxenda® under the skin (subcutaneous injection) in your stomach area (abdomen), upper leg (thigh), or upper arm, as instructed by your healthcare provider. Do not inject into a vein or muscle.
- If you take too much Saxenda®, call your healthcare provider right away. Too much Saxenda® may cause severe nausea and vomiting.
- If you miss your daily dose of Saxenda®, use Saxenda® as soon as you remember. Then take your next daily dose as usual on the following day. Do not take an extra dose of Saxenda® or increase your dose on the following day to make up for your missed dose. If you miss your dose of Saxenda® for 3 days or more, call your healthcare provider to talk about how to restart your treatment.
- Never share your Saxenda® pen or needles with another person. You may give an infection to them, or get an infection from them.
What are the possible side effects of Saxenda®?

- Saxenda® may cause serious side effects, including: possible thyroid tumors, including cancer. See “What is the most important information I should know about Saxenda?”
- Inflammation of the pancreas (pancreatitis). Stop using Saxenda® and call your healthcare provider right away if you have severe pain in your stomach area (abdomen) that will not go away, with or without vomiting. You may feel the pain from your abdomen to your back.
- Gallbladder problems. Saxenda® may cause gallbladder problems including gallstones. Some gallbladder problems need surgery. Call your healthcare provider if you have any of the following symptoms:
 - Pain in your upper stomach (abdomen)
 - Yellowing of your skin or eyes (jaundice)
 - Clay-colored stools
- Low blood sugar (hypoglycemia) in people with type 2 diabetes mellitus who also take medicines to treat type 2 diabetes mellitus. Saxenda® can cause low blood sugar in people with type 2 diabetes mellitus who also take medicines used to treat type 2 diabetes mellitus (such as sulfonylureas). In some people, the blood sugar may get so low that they need another person to help them. If you take a sulfonylurea medicine, the dose may need to be lowered while you use Saxenda®. Signs and symptoms of low blood sugar may include:
 - Shakiness
 - Sweating
 - Headache
 - Dizziness
 - Drowsiness
 - Weakness
 - Confusion
 - Irritability
 - Hunger
 - Fast heartbeat
 - Feeling jittery

Tell your healthcare provider about how to recognize and treat low blood sugar. Make sure that your family and other people who are around you a lot know how to recognize and treat low blood sugar. You should check your blood sugar before you start taking Saxenda® and while you take Saxenda®.

- Increased heart rate. Saxenda® can increase your heart rate while you are at rest. Your healthcare provider should check your heart rate while you take Saxenda®. Tell your healthcare provider if you feel your heart racing or pounding in your chest and it lasts for several minutes when taking Saxenda®.
- Kidney problems (kidney failure). Saxenda® may cause nausea, vomiting or diarrhea leading to loss of fluids (dehydration). Dehydration may cause kidney failure which can lead to the need for dialysis. This can happen in people who have never had kidney problems before. Drinking plenty of fluids may reduce your chance of dehydration. Call your healthcare provider right away if you have nausea, vomiting, or diarrhea that does not go away, or if you cannot drink liquids by mouth.
- Serious allergic reactions. Serious allergic reactions can happen with Saxenda®. Stop using Saxenda®, and get medical help right away if you have any symptoms of a serious allergic reaction. See “What is the most important information I should know about Saxenda?”.
- Depression or thoughts of suicide. You should pay attention to any mental changes, especially sudden changes, in your mood, behaviors, thoughts, or feelings. Call your healthcare provider if you have any symptoms of depression or thoughts of suicide.

The most common side effects of Saxenda® include:

- Nausea
- Headache
- Vomiting
- Constipation
- Low blood sugar (hypoglycemia)
- Decreased appetite
- Upset stomach
- Tiredness
- Dizziness
- Stomach pain
- Change in enzyme (lipase) levels in your blood

Nausea is most common when first starting Saxenda®, but decreases over time in most people as their body gets used to the medicine.

Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of Saxenda®. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

Keep your Saxenda® pen, pen needles, and all medicines out of the reach of children.

General information about the safe and effective use of Saxenda®.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use Saxenda® for a condition for which it was not prescribed. Do not give Saxenda® to other people, even if they have the same symptoms that you have. It may harm them.

You can ask your pharmacist or healthcare provider for information about Saxenda® that is written for health professionals.

What are the ingredients in Saxenda®?

Active ingredient: liraglutide

Inactive ingredients: disodium phosphate dihydrate, propylene glycol, phenol and water for injection

For more information, go to saxenda.com or call 1-844-363-4448.

Manufactured by: Novo Nordisk A/S, DK-2880 Bagsvaerd, Denmark

For information about Saxenda®, contact: Novo Nordisk Inc. 800 Scudders Mill Road, Plainsboro, NJ 08536 1-844-363-4448

Saxenda®, Victoza®, NovoFine®, and NovoTwist® are registered trademarks of Novo Nordisk A/S.

This Medication Guide has been approved by the U.S. Food and Drug Administration.

Revised: SEPTEMBER 2016, VERSION 2
Saxenda® (liraglutide) injection Instructions for Use

Instructions for Use

- Read these instructions carefully before using your Saxenda® pen.
- Do not use your pen without proper training from your healthcare provider. Make sure that you know how to give yourself an injection with the pen before you start your treatment.
- If you are blind or have poor eyesight and cannot read the dose counter on the pen, do not use this pen without help. Get help from a person with good eyesight who is trained to use the Saxenda® pen.
- You can refresh your training at any time by watching the online training video at www.saxenda.com.
- Start by checking your pen to make sure that it contains Saxenda®, then look at the pictures below to get to know the different parts of your pen and needle.
- Your pen is a prefilled dial-a-dose pen. It contains 18 mg of liraglutide, and you can select doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg and 3 mg. Your pen is made to be used with NovoFine® or NovoTwist® disposable needles up to a length of 6 mm.

Saxenda® pen and needle (example)

Step 1. Prepare your pen with a new needle

- Wash your hands with soap and water.
- Check the name and colored label of your pen to make sure that it contains Saxenda®. This is especially important if you take more than 1 type of medicine.
- Pull off the pen cap.
- Check that Saxenda® in your pen is clear and colorless. Look through the pen window. If Saxenda® looks cloudy, do not use the pen.
- Take a new needle, and tear off the paper tab.

Step 2. Check the Saxenda® flow with each new pen

- Check the Saxenda® flow before your first injection with each new pen. If your Saxenda® pen is already in use, go to Step 3 "Select your dose".
- Turn the dose selector until the dose counter shows the flow check symbol ().

Step 3. Select your dose

- Turn the dose selector until the dose counter shows your dose (0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg).
- Do not set the dose by counting the number of clicks you hear. Do not use the pen scale to set the dose. It does not show exactly how much Saxenda® is left in your pen.
- Only doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg can be selected with the dose selector. The selected dose must line up exactly with the dose pointer to make sure that you get a correct dose.
- The dose selector changes the dose. Only the dose counter and dose pointer will show how many mg you select for each dose. You can select up to 3 mg each dose. When your pen contains less than 3 mg, the dose counter stops before 3 mg is shown. The dose selector clicks differently when turned forward, backwards or past the number of mg left. Do not count the pen clicks.

Step 4. Inject your dose

- Insert the needle into your skin as your healthcare provider has shown you.
- Make sure you can see the dose counter. Do not cover it with your fingers. This could stop the injection.

A small drop may remain at the needle tip, but it will not be injected. Only check the Saxenda® flow before your first injection with each new pen.
• Press and hold down the dose button until the dose counter shows 0. The 0 must line up with the dose pointer. You may then hear or feel a click.

• Keep the needle in your skin after the dose counter has returned to 0 and count slowly to 6.

• If the needle is removed earlier, you may see a stream of Saxenda coming from the needle tip. If this happens, the full dose will not be delivered.

• Remove the needle from your skin. If blood appears at the injection site, press lightly. Do not rub the area.

> Always watch the dose counter to know how many mg you inject. Hold the dose button down until the dose counter shows 0.

How to identify a blocked or damaged needle?

• If 0 does not appear in the dose counter after continuously pressing the dose button, you may have used a blocked or damaged needle.

• If this happens you have not received any Saxenda® even though the dose counter has moved from the original dose that you have set.

How to handle a blocked needle?

Change the needle as described in Step 5, and repeat all steps starting with Step 1. “Prepare your pen with a new needle”. Make sure you select the full dose you need.

> Never touch the dose counter when you inject. This can stop the injection.

You may see a drop of Saxenda® at the needle tip after injecting. This is normal and does not affect your dose.

Step 5. After your injection

• Carefully remove the needle from the pen. Do not put the needle caps back on the needle, to avoid needle sticks.

• Place the needle in a sharps container right away to reduce the risk of needle sticks.

• Put the pen cap on your pen after each use to protect Saxenda® from light.

> If you do not have a sharps container, follow a 1-handed needle recapping method. Carefully slip the needle into the outer needle cap. Dispose of the needle in a sharps container as soon as possible.

Never try to put the inner needle cap back on the needle. You may stick yourself with the needle.

> Always remove the needle from your pen. This prevents contamination, infection, leakage of Saxenda®, and blocked needles leading to the wrong dose. If the needle is blocked, you will not inject any Saxenda®.

> Always dispose of the needle after each injection.

• Do not throw away in the household trash. Put the needle and any empty Saxenda® pen or any pen used for 30 days still containing Saxenda® in a FDA-cleared sharps disposal container right away after use.

• If you do not have a FDA-cleared sharps disposal container, you may use a household container that is:
 o made of a heavy-duty plastic
 o can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out upright and stable during use
 o leak-resistant
 o properly labeled to warn of hazardous waste inside the container

• When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles and syringes. For more information about the safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA’s website at: http://www.fda.gov/safesharpsdisposal

• Do not dispose of your used sharps disposal container in your household trash unless your community guidelines permit this. Do not recycle your used sharps disposal container.

> Safely dispose of Saxenda® that is out of date or no longer needed.

Important

• Caregivers must be very careful when handling used needles to prevent needle sticks and cross infection.

> Never use a syringe to withdraw Saxenda® from your pen.

• Always carry an extra pen and new needles with you, in case of loss or damage.

• Always keep your pen and needles out of reach of others, especially children.

• Do not share your Saxenda® pen or needles with anyone else. You may give an infection to them or get an infection from them.

• Always keep your pen with you. Do not leave it in a car or other place where it can get too hot or too cold.

Caring for your pen

• Do not drop your pen or knock it against hard surfaces. If you drop it or suspect a problem, attach a new needle and check the Saxenda® flow before you inject.

• Do not try to repair your pen or pull it apart.

• Do not expose your pen to dust, dirt or liquid.

• Do not wash, soak, or lubricate your pen. If necessary, clean it with mild detergent on a moistened cloth.

How should I store my Saxenda® pen?

• Store your new, unused Saxenda® pens in the refrigerator at 36°F to 46°F (2°C to 8°C).

• Store your pen in use for 30 days at 59°F to 86°F (15°C to 30°C) or in a refrigerator at 36°F to 46°F (2°C to 8°C).

• The Saxenda® pen you are using should be thrown away after 30 days, even if it still has Saxenda® left in it.

• Do not freeze Saxenda®. Do not use Saxenda® if it has been frozen.

• Unused Saxenda® pens may be used until the expiration date printed on the label, if kept in the refrigerator.

• Keep Saxenda® away from heat and out of the light.

This Medication Guide and Instructions for Use have been approved by the U.S. Food and Drug Administration.

October 2016

© 2017 Novo Nordisk
USA17SAM01586 5/2017