LEVEMIR® (insulin detemir injection), for subcutaneous use

CONTRAINDICATIONS

— DOSAGE FORMS AND STRENGTHS —

Injection 100 units/mL (U-100) available as:
- 3 mL single-patient-use LEVEMIR® FlexTouch® prefilled pen (3)
- 10 mL multiple-dose vial (3)

— ADVERSE REACTIONS —

Adverse reactions associated with LEVEMIR® include hypoglycemia, allergic reactions, injection site reactions, lipodystrophy, rash and pruritus (6).

To report SUSPECTED ADVERSE REACTIONS, contact Novo Nordisk Inc. at 1-800-727-6500 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

— DRUG INTERACTIONS —

- Drugs that Increase Hypoglycemia Risk or Increase or Decrease Blood Glucose Lowering Effect: Adjustment of dosage may be needed; closely monitor blood glucose (7).
- Drugs that blunt hypoglycemia signs and symptoms (e.g., beta-blockers, clonidine, guanethidine, and reserpine): Increased frequency of glucose monitoring may be required (7).

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revised: 3/2020
LEVEMIR® (insulin detemir injection)

5. WARNINGS AND PRECAUTIONS

5.1 Never Share a LEVEMIR® FlexTouch® Pen, Needle, or Strips between Patients

LEVEMIR® FlexTouch® prefilled pens must never be shared between patients, even if the needle is changed. Patients using LEVEMIR® vials should never share needles or syringes with another person. Sharing poses a risk for transmission of blood-borne pathogens.

5.2 Hyperglycemia or Hypoglycemia with Changes in Insulin Regimen

Changes in an insulin regimen (e.g., insulin strength, manufacturer, type, injection site or method of administration) may affect glycemic control and predispose to hypoglycemia (see Warnings and Precautions (5.2), Adverse Reactions (6)).

• During changes to a patient's insulin regimen, increase the frequency of blood glucose monitoring (see Warnings and Precautions (5.2)).

• Use LEVEMIR® FlexTouch® with caution in patients with visual impairment who may rely on audible clicks to dial their dose.

Do not dilute or mix LEVEMIR® with any other insulin or solution.

• Do not administer LEVEMIR® intravenously or in an insulin infusion pump.

5.3 Hypoglycemia

Hypoglycemia is the most common adverse reaction of insulin, including LEVEMIR® (see Adverse Reactions (6.1)). Severe hypoglycemia can cause seizures, may be life-threatening or cause death. Hypoglycemia can impair concentration ability and reaction time; this may place an individual and others at risk in situations where judgment is required (e.g., driving or operating other machinery). LEVEMIR®, or any insulin, should not be used during episodes of hypoglycemia (see Contraindications (4)).

Hypoglycemia may happen suddenly and symptoms may differ in each individual and change over time in the same individual. Symptoms of more severe hypoglycemia may be less pronounced in patients with longstanding diabetes, in patients with diabetic nerve disease, in patients using medications that block the sympathetic nervous system (e.g., beta-blockers) (see Drug Interactions (7)), or in patients who experience recurrent hypoglycemia.

Risk Factors for Hypoglycemia

The risk of hypoglycemia generally increases with intensity of glycemic control. The risk of hypoglycemia after an injection is related to the duration of action of the insulin (see Clinical Pharmacology (12.2)) and, in general, is highest when the glucose lowering effect of the insulin is maximal. As with all insulin preparations, the glucose lowering effect time course of LEVEMIR® may vary among different individuals or at different times in the same individual and depends on many conditions, including the area of injection as well as the injection site blood supply and temperature.

Other factors which may increase the risk of hypoglycemia include changes in meal pattern (e.g., macronutrient content or timing of food intake), changes in renal or hepatic function or during acute illness to minimize the risk of hypoglycemia or hyperglycemia (see Warnings and Precautions (5.2)).

In patients with type 1 diabetes, LEVEMIR® must be used in a regimen with rapid-acting or short-acting insulin.

2.3 Starting Dose in Insulin Naive Patients

The recommended starting dose of LEVEMIR® in patients with type 1 diabetes mellitus is approximately one-third to one-half of the total daily insulin dose. The remainder of the total daily insulin dose should be administered as short-acting pre-meal insulin. As a general rule, 0.2 to 0.4 units of insulin per kilogram of body weight can be used to calculate the initial total daily insulin dose in insulin naïve patients with type 1 diabetes.

The recommended starting dose of LEVEMIR® in patients with type 2 diabetes mellitus is inadequately controlled on oral antidiabetic medications or a GLP-1 receptor agonist is 10 units (or 0.1 units/kg to 0.2 units/kg) given once daily in the evening or divided into two daily regimens.

2.4 Starting Dose in Patients Already on Insulin Therapy

• If converting from insulin glargine to LEVEMIR®, the change can be done on a unit-to-unit basis.

• If converting from NPH insulin, the change can be done on a unit-to-unit basis. However, some patients with type 2 diabetes mellitus may require more LEVEMIR® than NPH insulin, as observed in one trial (see Clinical Studies (14.3)).

3. DOSAGE FORMS AND STRENGTHS

Injection: 100 unit per mL (U-100), is a clear, colorless, solution.

• 3 mL single-patient-use LEVEMIR® FlexTouch® prefilled pen

• 10 mL multiple-dose vial

4. CONTRAINDICATIONS

LEVEMIR® is contraindicated:

• During episodes of hypoglycemia (see Warnings and Precautions (5.3))

• In patients with hypersensitivity to LEVEMIR® or any of its excipients. Reactions have included anaphylaxis (see Warnings and Precautions (5.5) and Adverse Reactions (6.1)).
Adverse reactions in pregnant patients occurring at an incidence of ≥5% are shown in Table 4. The two most common adverse reactions were nasopharyngitis and headache. These are consistent with findings from other type 1 diabetes trials (see Table 1, Section 6.1), and are not repeated in Table 4.

The incidence of adverse reactions of pre-eclampsia was 10.5% (16 cases) and 7.0% (11 cases) in the LEVEMIR® and NPH insulin groups respectively. Out of the total number of cases of pre-eclampsia, eight (8) cases in the LEVEMIR® group and 1 case in the NPH insulin group required hospitalization. The rates of pre-eclampsia observed in the study are within expected rates for pregnancy complicated by diabetes. Pre-eclampsia is a syndrome defined by symptoms, hypertension and proteinuria, the definition of pre-eclampsia was not standardized in the trial making it difficult to establish a link between a given treatment and an increased risk of pre-eclampsia. All events were considered unlikely related to trial treatment. In all nine (9) cases requiring hospitalization the women had healthy infants. Events of hypertension, proteinuria and edema were reported less frequently in the LEVEMIR® group than in the NPH insulin group as a whole. There was no difference between the treatment groups in mean blood pressure during pregnancy and there was no indication of a general increase in blood pressure.

In the NPH insulin group there were 6 serious adverse reactions in four mothers of the following placental disorders, "Placenta previa", "Placenta previa hemorrhage", and "Premature separation of placenta" and 1 serious adverse reaction of "Antepartum haemorrhage". There were none reported in the LEVEMIR® group.

The incidence of early fetal death (abortions) was similar in LEVEMIR® and NPH treated patients; 6.6% and 5.1%, respectively. The abortions were reported under the following terms: 'Abortion spontaneous', 'Abortion missed', 'Blighted ovum', 'Cervical incompetence' and 'Abortion incomplete'.

In about a quarter of infants, LEVEMIR® was detected in the infant cord blood at levels above the lower level of quantification (<25 pmol/L).

No differences in pregnancy outcomes or the health of the fetus and newborn were seen with LEVEMIR® use.

Table 4: Adverse Reactions During Pregnancy in a Trial Comparing Insulin Aspart + LEVEMIR® to Insulin Aspart + NPH Insulin in Pregnant Women with Type 1 Diabetes (Adverse Reactions With Incidence ≥ 5%)

<table>
<thead>
<tr>
<th>LEVEMIR®, %</th>
<th>(n = 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>13.2</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11.8</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td>10.5</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>9.9</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>8.6</td>
</tr>
<tr>
<td>Abdominal pain upper</td>
<td>5.9</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3.3</td>
</tr>
<tr>
<td>Abortion spontaneous</td>
<td>5.3</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>5.3</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Hypoglycemia

Hypoglycemia is the most commonly observed adverse reaction in patients using insulin, including LEVEMIR®. The rates of reported hypoglycemia depend on the definition of hypoglycemia used, diabetes type, insulin dose, intensity of glucose control, background therapies, and other intrinsic and extrinsic patient factors. For these reasons, comparing rates of hypoglycemia in clinical trials for LEVEMIR® with the incidence of hypoglycemia for other products may be misleading and also, may not be representative of hypoglycemia rates that will occur in clinical practice.

Table 5 (type 1 diabetes) and Table 6 (type 2 diabetes) summarize the incidence of severe and non-severe hypoglycemia in the LEVEMIR® clinical trials.

For the adult trials and one of the pediatric trials (Study D), severe hypoglycemia was defined as an event with symptoms consistent with hypoglycemia requiring assistance of another person and associated with either a plasma glucose value below 56 mg/dL (blood glucose below 50 mg/dL) or prompt recovery after oral carbohydrate, intravenous glucose or glucagon administration. For the other pediatric trial (Study I), severe hypoglycemia was defined as an event with semi-consciousness, unconsciousness, coma and/or convulsions in a patient who could not assist in the treatment and who may have required glucagon or intravenous glucose.

For the adult trials, including the trial in pregnant women (study G), and pediatric study, Type 2 diabetes, severe hypoglycemia was defined as an asymptomatic or symptomatic plasma glucose <56 mg/dL (or equivalently blood glucose <50 mg/dL as used in Study A and C) that was self-treated by the patient. For pediatric Study I, non-severe hypoglycemia included asymptomatic events with plasma glucose ≤55 mg/dL as well as symptomatic events that the patient could self-treat or treat by taking oral therapy provided by the caregiver.

Table 5: Hypoglycemia in Patients with Type 1 Diabetes

<table>
<thead>
<tr>
<th>Study</th>
<th>Type 1 Diabetes</th>
<th>Adults</th>
<th>Severe Hypoglycemia</th>
<th>Non-Severe Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16 weeks</td>
<td>Percent of patients with at least 1 event (n/total N)</td>
<td>Event/patient/year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Twice-Daily LEVEMIR®</td>
<td></td>
</tr>
<tr>
<td>Study A</td>
<td>Type 1 Diabetes Adults</td>
<td>8.7 (24/276)</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Study B</td>
<td>Type 1 Diabetes Adults</td>
<td>5.0 (8/161)</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Study C</td>
<td>Type 1 Diabetes Adults</td>
<td>7.5 (37/491)</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Study D</td>
<td>Type 1 Diabetes PEDIATRICS</td>
<td>15.9 (37/232)</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Study I</td>
<td>Type 1 Diabetes PEDIATRICS</td>
<td>1.7 (3/177)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Study G</td>
<td>Type 1 Diabetes Pregnancy</td>
<td>16.4 (25/152)</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Hypoglycemia in Patients with Type 2 Diabetes

<table>
<thead>
<tr>
<th>Study</th>
<th>Type 2 Diabetes</th>
<th>Adults</th>
<th>Severe hypoglycemia</th>
<th>Non-severe hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>26 weeks</td>
<td>Percent of patients with at least 1 event (n/total N)</td>
<td>Event/patient/year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Twice-Daily LEVEMIR®</td>
<td></td>
</tr>
<tr>
<td>Study E</td>
<td>Type 2 Diabetes Adults</td>
<td>0.4 (1/237)</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Study F</td>
<td>Type 2 Diabetes Adults</td>
<td>0.01 (1/135)</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Study H</td>
<td>Type 2 Diabetes Adults</td>
<td>40.5 (96/237)</td>
<td>32.3 (63/195)</td>
<td></td>
</tr>
</tbody>
</table>

Allergic Reactions

Severe, life-threatening, generalized allergy, including anaphylaxis, generalized skin reactions, angioedema, bronchospasm, hypotension, and shock may occur with any insulin, including LEVEMIR®, and may be life-threatening.

Insulin Injection and Intensification of Glucose Control

Intensification or rapid improvement in glucose control has been associated with a transitory, reversible ophthalmologic refraction disorder, worsening of diabetic retinopathy, and acute painful peripheral neuropathy. However, long-term glycemic control decreases the risk of diabetic retinopathy and neuropathy.

Lipoatrophy

Long-term use of insulin, including LEVEMIR®, can cause lipoatrophy at the site of repeated insulin injections. Lipoatrophy includes lipoatrophy (thinning of adipose tissue) and lipoatrophy (thinning of adipose tissue) and may affect insulin absorption (see Dosage and Administration (2.1)).
inflammation. In clinical studies in adults, three patients treated with LEVEMIR® reported injection site pain (0.25%).

All insulin products can elicit the formation of insulin antibodies. These insulin antibodies may increase or decrease the efficacy of insulin and may require adjustment of the insulin dose. In clinical trials of LEVEMIR®, antibody development has been observed with no apparent impact on glycemic control.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post approval use of LEVEMIR®. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Medication errors have been reported in which other insulins, particularly rapid-acting or short-acting insulins, have been accidentally administered instead of LEVEMIR®.

Localized cutaneous amyloidosis at the injection site has occurred. Hypoglycemia has been reported with repeated insulin injections into areas of localized cutaneous amyloidosis; hypoglycemia has been reported with a sudden change to an unaffected injection site.

7 DRUG INTERACTIONS

Table 7 includes clinically significant drug interactions with LEVEMIR®.

Table 7: Clinically Significant Drug Interactions with LEVEMIR®

Drugs That May Increase the Risk of Hypoglycemia

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidiabetic agents, ACE inhibitors, angiotensin II receptor blockers, diacylglycerol, fibrates, fluoxetine, monoamine oxidase inhibitors, pentoxifylline, pramlintide, salicylates, somatostatin analogs (e.g., lanreotide, octreotide), and sulfonamides</td>
<td>Increases the risk of hypoglycemia</td>
</tr>
</tbody>
</table>

Drugs That May Decrease the Blood Glucose Lowering Effect of LEVEMIR®

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antilipidemic agents</td>
<td>Decreases the blood glucose lowering effect of LEVEMIR®</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>Decreases the blood glucose lowering effect of LEVEMIR®</td>
</tr>
<tr>
<td>Beta-blockers, clonidine, and lithium salts</td>
<td>Decreases the blood glucose lowering effect of LEVEMIR®</td>
</tr>
</tbody>
</table>

Drugs That May Blunt Signs and Symptoms of Hypoglycemia

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-blockers, clonidine, guanethidine, and reserpine</td>
<td>Blunts signs and symptoms of hypoglycemia</td>
</tr>
</tbody>
</table>

USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Available data from published studies and postmarketing case reports with LEVEMIR® use in pregnant women have not identified a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. In a randomized, open-label clinical trial that included 152 pregnant women with type 1 diabetes who were administered LEVEMIR® once or twice daily, beginning in gestational weeks 8 to 12 or prior to conception, no clear evidence of malformations or fetal risk attributed to LEVEMIR® was observed [see Adverse Reactions (6.1) and Clinical Studies (14)]. There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy (see Clinical Considerations). Animal reproduction studies were conducted in non-diabetic pregnant rabbits and rats with insulin detemir administration at 3 and 135 times the human dose of 0.5 units/kg/day, respectively, throughout pregnancy. Overall, the effects of insulin detemir did not generally differ from those observed with regular human insulin (see Data).

The estimated background risk of major birth defects is 6-10% in women with pre-gestational diabetes with an HbA1c >7 and has been reported to be as high as 20-25% in women with an HbA1c >10. The estimated background risk of miscarriage for the indicated population is considered low. The estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Clinical Considerations

Disease-Associated Maternal and/or Embryo/Fetal Risk

Poorly controlled diabetes in pregnancy increases the maternal risk for pre-eclampsia, preeclampsia, spontaneous abortion, preterm delivery, and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia-related morbidity.

Data

Antimicrobial Data

In a fertility and embryonic development study, insulin detemir was administered to female rats before mating, during mating, and throughout pregnancy at doses up to 300 nmol/kg/day (3 times a human dose of 0.5 units/kg/day, based on plasma area under the curve (AUC) ratio). Doses of 130 and 300 nmol/kg/day produced numbers of litters with visceral anomalies. Doses up to 900 nmol/kg/day (approximately 135 times a human dose of 0.5 units/kg/day based on AUC ratio) were given to rabbits during organogenesis. Drug and dose related increases in the incidence of fetuses with gallbladder abnormalities such as small, bilobed, bifurcated, and missing gallbladders were observed at a dose of 900 nmol/kg/day. The rat and rabbit embryofetal development studies included non-human primates in the treatment groups with insulin detemir, on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's need for insulin detemir (see Clinical Pharmacology (12.3)) and any potential adverse effects on the breastfed infant from LEVEMIR® or from the underlying maternal condition.

8.2 Lactation

Risk Summary

Available data from published literature demonstrate that exogenous human insulin products, including biosynthetic insulin such as insulin detemir, are transferred into human milk. There are no published reports of adverse reactions, including hypoglycemia, in human infants exposed to exogenous human insulin products; including insulin detemir, in breastmilk. There are no data on the effects of exogenous human insulin products, including insulin detemir, on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for LEVEMIR® and any potential adverse effects on the breastfed infant from LEVEMIR® or from the underlying maternal condition.

8.4 Pediatric Use

The safety and tolerability of LEVEMIR® to improve glycemic control in type 1 and type 2 diabetes mellitus have been established in pediatric patients. The use of LEVEMIR® for this indication is supported by evidence from an adequate and well-controlled study in 694 pediatric patients aged 12 to 17 years with type 1 diabetes mellitus [see Clinical Studies (14.2)] and from other studies in pediatric patients and adults with diabetes mellitus [see Clinical Pharmacology (12.3), Clinical Studies (14.4)].

8.5 Geriatric Use

In clinical trials of LEVEMIR®, 64 of 1624 patients (4%) in the type 1 diabetes trials and 309 of 1082 patients (29%) in the type 2 diabetes trials were 65 years or older. A total of 52 (7 type 1 and 45 type 2) patients (2%) were 75 years or older. No overall differences in safety or effectiveness were observed between these patients and younger patients, but smaller sample sizes limits conclusions. Greater sensitivity of some older individuals cannot be ruled out. In elderly patients, the initial dosing, dose increments, and maintenance dosages should be conservative to avoid hypoglycemia. Hypoglycemia may be difficult to recognize in the elderly.

8.6 Renal Impairment

No difference was observed in the pharmacokinetics of LEVEMIR® between non-diabetic individuals with renal impairment and healthy volunteers. However, some studies with human insulin have shown increased circulating insulin concentrations in patients with reduced renal function. Careful glucose monitoring and dose adjustments of LEVEMIR® may be necessary in patients with renal impairment [see Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment

Non-diabetic individuals with severe hepatic impairment had increased circulating insulin concentrations in patients with liver impairment. Careful glucose monitoring and dose adjustments of LEVEMIR®, may be necessary in patients with hepatic impairment [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE

An excess of insulin relative to food intake, energy expenditure, or both may lead to severe and sometimes prolonged and life-threatening hypoglycemia and hypokalemia [see Warnings and Precautions (5.3, 5.6)]. Mild episodes of hypoglycemia usually can be treated with oral glucose. Adjustments in drug dosage, meal patterns, or exercise may be needed. More severe episodes with coma, seizure, or neurologic impairment may be treated with intramuscular/subcutaneous glucagon or concentrated intravenous glucose. After apparent clinical recovery from hypoglycemia, continued observation and additional carbohydrate intake may be necessary to avoid recurrence of hypoglycemia. Hypokalemia must be corrected appropriately.

11 DESCRIPTION

LEVEMIR® (insulin detemir injection) is a clear, colorless, aqueous, neutral sterile solution. Each milliliter of LEVEMIR® contains 100 units (14.2 mg/mL) insulin detemir, 65.4 mcg zinc, 2.06 mg m-cresol, 16.0 mg glycyrhrizin, 1.80 mg phenol, 0.00347% dicyandiamide, 1.17 mg sodium chloride, and water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH. LEVEMIR® has a pH of approximately 7.4.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

The primary activity of insulin, including LEVEMIR®, is regulation of glucose metabolism. Insulins and its analogs lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin also inhibits lipolysis and proteolysis, and enhances protein synthesis.

12.2 Pharmacodynamics

Insulin detemir is a soluble, long-acting basal human insulin analog with up to a 24-hour duration of action. The pharmacodynamic effect of LEVEMIR® is relatively constant with no pronounced peak. The duration of action of LEVEMIR® is mediated by slowed systemic absorption of insulin detemir molecules from the injection site due to self-association of the drug molecules. In addition, the distribution of insulin detemir to peripheral target tissues is slowed because of binding to circulating components.

Figure 2 shows results from a study in patients with type 1 diabetes conducted for a maximum of 24 hours after the subcutaneous injection of LEVEMIR®. The mean time between injection and the end of pharmacological effect for insulin detemir ranged from 7.6 hours to >24 hours (24 hours was the end of the observation period).

Figure 2: Activity Profiles in Patients with Type 1 Diabetes in a 24-hour Glucose Clamp Study

<table>
<thead>
<tr>
<th>Time Since Insulin Injection (hours)</th>
<th>Glucose Infusion Rate (mg/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2 Units/kg</td>
<td>6.0</td>
</tr>
<tr>
<td>0.2 Units/kg</td>
<td>4.0</td>
</tr>
<tr>
<td>AUCmax (mg/kg)</td>
<td>5.6</td>
</tr>
<tr>
<td>GRmax (mg/kg/min)</td>
<td>1.1</td>
</tr>
<tr>
<td>LEVEMIR® 0.2 Units/kg</td>
<td>0.0</td>
</tr>
<tr>
<td>LEVEMIR® 0.4 Units/kg</td>
<td>0.0</td>
</tr>
<tr>
<td>LEVEMIR® Area Under Curve for Glucose Infusion Rate</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Figure 3 shows glucose infusion rate results from a 16-hour glucose clamp study in patients with type 2 diabetes. The clamp study was terminated at 16 hours according to protocol.

Figure 3: Activity Profiles in Patients with Type 2 Diabetes in a 16-hour Glucose Clamp Study

12.3 Pharmacokinetics

Absorption
After subcutaneous injection of LEVEMIR® in healthy subjects and in patients with type 1 diabetes, insulin detemir serum concentrations had a relatively constant concentration/time profile over 24 hours with the maximum serum concentration (Cmax) reached between 6-8 hours post-dose. Insulin detemir was more slowly absorbed after subcutaneous administration to the thigh where AUC0-24 was 30-40% lower and AUC0-inf was 10% lower than the corresponding AUCs with subcutaneous injections to the deltoid and abdominal regions. The absolute bioavailability of insulin detemir is approximately 60%.

Distribution
Insulin detemir has an apparent volume of distribution of approximately 0.1 L/kg. More than 98% of insulin detemir in the bloodstream is bound to albumin. The results of in vitro and in vivo protein binding studies demonstrate that there is no clinically relevant interaction between insulin detemir and fatty acids or other protein-bound drugs.

Elimination
After subcutaneous administration in patients with type 1 diabetes, insulin detemir has a terminal half-life of 5 to 7 hours depending on dose.

Specific Populations
Pediatric Patients
The pharmacokinetic properties of LEVEMIR® were studied in pediatric patients 6-12 years, 13-17 years, and adults with type 1 diabetes. In pediatric patients 6-12 years, the insulin detemir plasma area under the curve (AUC) and Cmax were increased by 10% and 24%, respectively, as compared to adults. There was no difference in pharmacokinetics between pediatric patients 13-17 years and adults.

Geriatrics
In a clinical trial studying differences in pharmacokinetics of a single subcutaneous dose of insulin detemir in young (20 to 35 years) versus elderly (>68 years) healthy subjects, the insulin detemir AUC was up to 35% higher among the elderly subjects due to reduced clearance [See Use in Specific Populations (8.5)].

Gender
No clinically relevant differences in pharmacokinetic parameters of LEVEMIR® are observed between males and females.

Race
In two clinical pharmacology studies conducted in healthy Japanese and Caucasian subjects, there were no clinically relevant differences seen in pharmacokinetic parameters. The pharmacokinetics and pharmacodynamics of LEVEMIR® were studied in a clamp study comparing patients with type 2 diabetes of Caucasian, African-American, and Latino origin. Dose-response relationships for LEVEMIR® were comparable in these three populations.

Renal impairment
A single subcutaneous dose of 0.2 units/kg of LEVEMIR® was administered to healthy subjects and those with varying degrees of renal impairment (mild, moderate, severe, and hemodialysis-dependent). In this study, there were no differences in the pharmacokinetics of LEVEMIR® between healthy subjects and those with renal impairment [See Use in Specific Populations (8.6)].

Hepatic impairment
A single subcutaneous dose of 0.2 units/kg of LEVEMIR® was administered to healthy subjects and those with varying degrees of hepatic impairment (mild, moderate, and severe). LEVEMIR® exposure as estimated by AUC decreased with increasing degrees of hepatic impairment with a corresponding increase in apparent clearance [See Use in Specific Populations (8.7)].

Smoking
The effect of smoking on the pharmacokinetics and pharmacodynamics of LEVEMIR® has not been studied.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Standard 2-year carcinogenicity studies in animals have not been performed. Insulin detemir tested negative for genotoxic potential in the in vitro reverse mutation study in bacteria, human peripheral blood lymphocyte chromosomal aberration test, and the in vivo mouse micronucleus test. In a fertility and embryonic development study, insulin detemir was well tolerated in rats and achieved pregnancy rates similar to controls. The efficacy and safety of LEVEMIR® given twice-daily was compared to once-daily insulin glargine in an open-label, randomized, parallel study of 320 patients with type 1 diabetes. The evening LEVEMIR® dose was titrated in all trials according to pre-defined targets for fasting blood glucose. The pre-dinner blood glucose was used to titrate the morning LEVEMIR® dose in those trials that also administered LEVEMIR® in the morning. In general, the reduction in HbA1c with LEVEMIR® was similar to that with NPH insulin or insulin glargine.

14.1 Type 1 Diabetes – Adult
In a 16-week open-label clinical study (Study A, n=409), adults with type 1 diabetes were randomized to treatment with either LEVEMIR®, insulin aspart, or NPH insulin given twice-daily. LEVEMIR® was administered in the morning and bedtime dose or NPH insulin administered in the morning and bedtime. Insulin aspart was also administered before each meal. At 16 weeks of treatment, the combined LEVEMIR®-treated patients had similar HbA1c and fasting plasma glucose (FPG) reductions compared to the NPH-treated patients (Table 8). Differences in timing of LEVEMIR® administration had no effect on HbA1c, fasting plasma glucose (FPG), or body weight.

In a 26-week, open-label clinical study (Study B, n=320), adults with type 1 diabetes were randomized to twice-daily LEVEMIR® (administered in the morning and bedtime) or once-daily insulin glargine (administered at bedtime). Insulin aspart was administered before each meal. LEVEMIR®-treated patients had a decrease in HbA1c similar to that of insulin glargine-treated patients.

In a 24-week, open-label clinical study (Study C, n=749), adults with type 1 diabetes were randomized to once-daily LEVEMIR® or once-daily NPH insulin, both administered at bedtime and in combination with regular human insulin before each meal. LEVEMIR® and NPH insulin had a similar effect on HbA1c.

Table 8: Type 1 Diabetes Mellitus – Adult

<table>
<thead>
<tr>
<th>Treatment duration</th>
<th>Study A</th>
<th>Study B</th>
<th>Study C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 weeks</td>
<td>26 weeks</td>
<td>24 weeks</td>
</tr>
<tr>
<td>Treatment in combination with</td>
<td>NovoLog® (insulin aspart)</td>
<td>NovoLog® (insulin aspart)</td>
<td>Human Soluble Insulin (regular insulin)</td>
</tr>
<tr>
<td></td>
<td>Twice-daily LEVEMIR®</td>
<td>Twice-daily NPH</td>
<td>Twice-daily LEVEMIR®</td>
</tr>
<tr>
<td>Number of patients treated</td>
<td>276</td>
<td>133</td>
<td>161</td>
</tr>
<tr>
<td>HbA1c (%) Baseline</td>
<td>8.6</td>
<td>8.5</td>
<td>8.9</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
<td>-0.8*</td>
<td>-0.7*</td>
<td>-0.6**</td>
</tr>
<tr>
<td>LEVEMIR® - NPH 95% CI for Treatment difference</td>
<td>-0.2</td>
<td>(-0.3, -0.0)</td>
<td>(-0.2, 0.0)</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL) Baseline mean</td>
<td>209</td>
<td>220</td>
<td>153</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
<td>-44*</td>
<td>-9*</td>
<td>-38**</td>
</tr>
</tbody>
</table>

*From an ANCOVA model adjusted for baseline value and country.
**From an ANCOVA model adjusted for baseline value and study site.

14.2 Type 1 Diabetes – Pediatric
Two open-label, randomized, controlled clinical studies have been conducted in pediatric patients with type 1 diabetes. One study was 26 weeks in duration and enrolled patients 6 to 17 years of age. The other study was 52 weeks in duration and enrolled patients 2 to 16 years of age. In both studies, LEVEMIR® and NPH insulin were administered once- or twice-daily. Bolus insulin aspart was administered before each meal. In the 26-week study, LEVEMIR®-treated patients had a mean decrease in HbA1c similar to that of NPH insulin (Table 9). In the 52-week study, the randomization was stratified by age (2-5 years, n=82, and 6-16 years, n=265) and the HbA1c increased in both treatment arms, with similar findings in the 2-5 year-old age group (n=80) and the 6-18 year-old age group (n=258) (Table 9).

Table 9: Type 1 Diabetes Mellitus – Pediatric

<table>
<thead>
<tr>
<th>Treatment duration</th>
<th>Study D</th>
<th>Study I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26 weeks</td>
<td>52 weeks</td>
</tr>
<tr>
<td>Treatment in combination with</td>
<td>NovoLog® (insulin aspart)</td>
<td>NovoLog® (insulin aspart)</td>
</tr>
<tr>
<td></td>
<td>Once- or Twice Daily LEVEMIR®</td>
<td>Once- or Twice Daily NPH</td>
</tr>
<tr>
<td>Number of subjects treated</td>
<td>232</td>
<td>115</td>
</tr>
<tr>
<td>HbA1c (%) Baseline</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
<td>-0.7*</td>
<td>-0.8*</td>
</tr>
<tr>
<td>LEVEMIR® - NPH 95% CI for Treatment difference</td>
<td>0.1</td>
<td>(-0.3, 0.0)</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL) Baseline mean</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
<td>-39</td>
<td>-21</td>
</tr>
</tbody>
</table>

*From an ANCOVA model adjusted for baseline value, geographical region, gender and age (covariate).
**From an ANCOVA model adjusted for baseline value, country, pubertal status at baseline and age (stratification factor).
14.3 Type 1 Diabetes – Pregnancy

In an open-label clinical study, women with type 1 diabetes who were between weeks 8 and 12 of gestation were randomized to receive LEVEMIR® (once or twice daily) or NPH insulin (once or twice daily). Insulin aspart was administered before each meal. A total of 152 women in the LEVEMIR® arm and 158 women in the NPH arm were or became pregnant during the study. Approximately one half of the study participants in each arm were randomized as pregnant and were exposed to NPH or to other insulins prior to conception and in the first 8 weeks of gestation. In the 310 pregnant women, the mean glycosylated hemoglobin (HbA1c) was <7% at 10, 12, and 24 weeks of pregnancy. In both arms, the intent-to-treat population, the adjusted mean HbA1c was 7.8% (0.053) lower in the LEVEMIR®-treated patients (n=158) than in the NPH-treated patients (n=154), the difference was not clinically significant.

14.4 Type 2 Diabetes – Adult

In a 24-week, open-label, randomized clinical study (Study E, n=476), LEVEMIR® administered twice-daily (before breakfast and evening) was compared to NPH insulin administered twice-daily (before breakfast and evening) as part of a regimen of stable combination therapy with one or two of the following oral antidiabetic medications: metformin, an insulin secretagogue, or an alpha-glucosidase inhibitor. All patients were insulin-naïve at the time of randomization. LEVEMIR® and NPH insulin similarly lowered HbA1c from baseline (Table 10).

In a 22-week, open-label, randomized clinical study (Study F, n=395) in adults with type 2 diabetes, LEVEMIR® and NPH insulin were given once- or twice-daily as part of a basal-bolus regimen with insulin aspart at bedtime. As measured by HbA1c, LEVEMIR® had efficacy similar to that of NPH insulin.

<table>
<thead>
<tr>
<th>Table 10: Type 2 Diabetes Mellitus – Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Baseline HbA1c (%)</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
</tr>
<tr>
<td>LEVEMIR® – NPH</td>
</tr>
<tr>
<td>Baseline mean</td>
</tr>
<tr>
<td>Adj. mean change from baseline</td>
</tr>
</tbody>
</table>

For Study F - Fasting blood glucose data not collected.
*From an ANCOVA model adjusted for baseline value, country and oral antidiabetic treatment category.
**From a logistic regression model adjusted for baseline value and country.

Combination Therapy with Metformin and Liraglutide

This 26-week open-label trial enrolled 988 patients with inadequate glycemic control (HbA1c ≥15%) on metformin (≥1500 mg/day) alone or inadequate glycemic control (HbA1c (≥1500 mg/day) and a sulfonylurea. Patients who were on metformin (≥1500 mg/day) alone or inadequate glycemic control (HbA1c (≥1500 mg/day) and a sulfonylurea discontinued use of metformin alone.

In a 22-week, open-label, randomized, clinical study (Study F, n=395) in adults with type 2 diabetes, treatment with LEVEMIR® and FPG compared to continued treatment with liraglutide 1.8 mg + metformin alone resulted in statistically significant reductions in HbA1c and FPG compared to continued, unchanged treatment with liraglutide 1.8 mg + metformin alone (Table 11). From a mean baseline body weight of 96 kg after randomization, there was a mean reduction of 0.3 kg in the patients who received LEVEMIR® add-on therapy compared to a mean reduction of 1.1 kg in the patients who continued on unchanged treatment with liraglutide 1.8 mg + metformin alone.

17 PATIENT COUNSELING INFORMATION

See FDA-Approved Patient Labeling (Patient Information and Instructions for Use)
Never Share a LEVEMIR® FlexTouch® pen with another person, even if the needle is changed. LEVEMIR® FlexTouch® dials in 1-unit increments.

16.1 How Supplied

LEVEMIR® is available as a clear and colorless solution containing 100 units of insulin detemir per mL (U/100) in the following presentations:

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Total Volume</th>
<th>NDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-patient-use FlexTouch® pen</td>
<td>3 mL</td>
<td>0169-6438-10</td>
</tr>
<tr>
<td>Multiple-dose vial</td>
<td>10 mL</td>
<td>0169-3687-12</td>
</tr>
</tbody>
</table>

FlexTouch® can be used with NovoFine® or NovoTwist® disposable needles. Each FlexTouch® is for use by a single patient. LEVEMIR® FlexTouch® must never be shared between patients, even if the needle is changed.

Table 11: Results of a 26-week Open-label Trial of LEVEMIR® as Add-on to Liraglutide Metformin Compared to Continued Treatment with Liraglutide + Metformin Alone in Patients Not Achieving HbA1c <7% After 12 Weeks of Metformin and Liraglutide

<table>
<thead>
<tr>
<th>Study H</th>
<th>LEVEMIR® + Liraglutide + Metformin</th>
<th>Liraglutide + Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent-to-Treat Population (N)</td>
<td>162</td>
<td>157</td>
</tr>
<tr>
<td>HbA1c (%) (Mean)</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Adjusted mean change from baseline</td>
<td>-0.5*</td>
<td>0*</td>
</tr>
<tr>
<td>Difference from liraglutide + metformin arm (LS mean)</td>
<td>-0.5***</td>
<td>(-0.7, -0.4)</td>
</tr>
<tr>
<td>Percentage of patients achieving HbA1c <7%</td>
<td>43**</td>
<td>17**</td>
</tr>
<tr>
<td>Fasting Plasma Glucose (mg/dL) (Mean)</td>
<td>166</td>
<td>159</td>
</tr>
<tr>
<td>Baseline (week 0)</td>
<td>-38*</td>
<td>-7*</td>
</tr>
<tr>
<td>Adjusted mean change from baseline</td>
<td>-31***</td>
<td>(-39, -23)</td>
</tr>
</tbody>
</table>

*From an ANCOVA model adjusted for baseline value, country and previous oral antidiabetic treatment category.
**From a logistic regression model adjusted for baseline HbA1c.
***p-value <0.001
Do not share your Levemir® FlexTouch® with other people, even if the needle has been changed. You may give other people a serious infection, or get a serious infection from them.

What is Levemir®?
- Levemir® is a man-made insulin that is used to control high blood sugar in adults and children with diabetes mellitus.
- Levemir® is not meant for use to treat diabetic ketoacidosis.

Who should not take Levemir®?
Do not take Levemir® if you:
- have an allergy to Levemir® or any of the ingredients in Levemir®.

Before taking Levemir®, tell your healthcare provider about all your medical conditions including, if you are:
- pregnant, planning to become pregnant, or are breastfeeding.
- taking new prescription or over-the-counter medicines, vitamins, or herbal supplements.

Before you start taking Levemir®, talk to your healthcare provider about low blood sugar and how to manage it.

How should I take Levemir®?
- Read the Instructions for Use that come with your Levemir®.
- Take Levemir® exactly as your healthcare provider tells you to.
- Know the type and strength of insulin you take. Do not change the type of insulin you take unless your healthcare provider tells you to. The amount of insulin and the best time for you to take your insulin may need to change if you take different types of insulin.
- Check your blood sugar levels. Ask your healthcare provider what your blood sugars should be and when you should check your blood sugar levels.
- Do not reuse or share your needles or syringes with other people. You may give other people a serious infection, or get a serious infection from them.
- Never inject Levemir® into a vein or muscle.
- Change (rotate) your injection sites within the area you choose with each dose to reduce your risk of getting lipodystrophy (pits in skin or thickened skin) and localized cutaneous amyloidosis (skin with lumps) at the injection sites.
 - Do not use the exact same spot for each injection.
 - Do not inject where the skin has pits, is thickened, or has lumps.
 - Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.

What should I avoid while taking Levemir®?
While taking Levemir® do not:
- Drive or operate heavy machinery, until you know how Levemir® affects you.
- Drink alcohol or use prescription or over-the-counter medicines that contain alcohol.

What are the possible side effects of Levemir®?
Levemir® may cause serious side effects that can lead to death, including:
- Low blood sugar (hypoglycemia). Signs and symptoms that may indicate low blood sugar include:
 - dizziness or light-headedness
 - sweating
 - confusion
 - headache
 - blurred vision
 - slurred speech
 - shakiness
 - fast heart beat
- Your insulin dose may need to change because of:
 - change in level of physical activity or exercise
 - weight gain or loss
 - increased stress
 - illness
 - change in diet
- Other common side effects of Levemir® may include:
 - Reactions at the injection site, itching, rash, serious allergic reactions (whole body reactions), skin thickening or pits at the injection site (lipodystrophy), weight gain, and swelling of your hands and feet.

Get emergency medical help if you have:
- trouble breathing, shortness of breath, fast heartbeat, swelling of your face, tongue, or throat, sweating, extreme drowsiness, dizziness, confusion.

These are not all the possible side effects of Levemir®. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

What are the ingredients in Levemir®?
Active Ingredient: insulin detemir
Inactive Ingredients: zinc, m-cresol, glycerol, phenol, disodium phosphate dihydrate, sodium chloride and water for injection. Hydrochloric acid or sodium hydroxide may be added.

Manufactured by:
Novo Nordisk A/S
DK-2880 Bagsvaerd, Denmark
For more information, go to www.novonordisk-us.com or call 1-800-727-6500.

This Patient Information has been approved by the U.S. Food and Drug Administration.

Revised: 11/2019
How should I use the LEVEMIR® 10 mL vial?

Using the 10 mL vial:

1. Check to make sure that you have the correct type of insulin. This is especially important if you use different types of insulin.

2. Look at the vial and the insulin. The LEVEMIR® insulin should be clear and colorless. The tamper-resistant cap should be in place before the first use. If the cap has been removed before your first use of the vial, or if the insulin is cloudy or colored, do not use the insulin and return it to your pharmacy.

3. Wash your hands with soap and water.

4. If you are using a new vial, pull off the tamper-resistant cap.

5. Do not roll or shake the vial. Shaking the vial right before the dose is drawn into the syringe may cause bubbles or foam. This can cause you to draw up the wrong dose of insulin. The insulin should be used only if it is clear and colorless.

6. Pull back the plunger on your syringe until the black tip reaches the unit marking for the number of units you will inject.

7. Push the needle through the rubber stopper into the vial.

8. Push the plunger all the way in. This inserts air into the vial.

9. Turn the vial and syringe upside down and slowly pull the plunger back to a few units beyond the correct dose that you need.

10. If there are air bubbles, tap the syringe gently with your finger to raise the air bubbles to the top of the needle. Then slowly push the plunger to the correct unit marking for your dose.

11. Check to make sure you have the right dose of LEVEMIR® in the syringe.

12. Pull the syringe out of the vial.

13. Inject your LEVEMIR® right away as instructed by your healthcare provider. LEVEMIR® can be injected under the skin (subcutaneously) of your stomach area (abdomen), upper legs (thighs) or upper arms. For each injection, change (rotate) your injection site within the area of skin that you use to reduce your risk of getting lipodystrophy (pits in skin or thickened skin) and localized cutaneous amyloidosis (skin with lumps) at the injection sites. Do not use the same injection site for each injection. Do not inject where the skin has pits, is thickened, or has lumps. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.

How should I inject LEVEMIR® with a syringe?

If you clean your injection site with an alcohol swab, let the injection site dry before you inject. Talk with your healthcare provider about how to rotate injection sites and how to give an injection.

1. Pinch your skin between two fingers, push the needle into the skinfold, using a dart-like motion and push the plunger to inject the insulin under your skin. The needle will be straight in.

2. Keep the needle under your skin for at least 6 seconds to make sure you have injected all the insulin. After you pull the needle from your skin you may see a drop of Levemir® at the needle tip. This is normal and has no effect on the dose you just received.

3. If blood appears after you pull the needle from your skin, press the injection site lightly with an alcohol swab. Do not rub the area.

4. After each injection, remove the needle without recapping and dispose of it in a puncture-resistant container. Used vials, syringes, needles, and lancets should be placed in sharps containers (such as red biohazard containers), hard plastic containers (such as detergent bottles), or metal containers (such as an empty coffee can). Such containers should be sealed and disposed of properly.

How should I store LEVEMIR®?

- Do not freeze LEVEMIR®. Do not use LEVEMIR® if it has been frozen.
- Keep LEVEMIR® away from heat or light.
- All unopened:
 - Store unopened LEVEMIR® vials in the refrigerator at 36°F to 46°F (2°C to 8°C).
 - Unopened vials may be used until the expiration date printed on the label, if they have been stored in the refrigerator.
 - Unopened vials should be thrown away after 42 days, if they are stored at room temperature below 86°F (30°C).
- After vials have been opened:
 - Opened LEVEMIR® vials can be stored in the refrigerator at 36°F to 46°F (2°C to 8°C) or at room temperature below 86°F (30°C).
 - Throw away all opened LEVEMIR® vials after 42 days, even if they still have insulin left in them.
Needle

Step 1:

• Pull Pen cap straight off (See Figure B).

Step 2:

• Check the liquid in the Pen (See Figure C). Levemir® should look clear and colorless. Do not use it if it looks cloudy or colored.

Step 3:

• Select a new needle.
• Pull off the paper tab from the outer needle cap (See Figure D).

Step 4:

• Push the capped needle straight onto the Pen and twist the needle on until it is tight (See Figure E).

Step 5:

• Pull off the outer needle cap. Do not throw it away (See Figure F).

Step 6:

• Pull off the inner needle cap and throw it away (See Figure G).

Step 7:

• Turn the dose selector to select 2 units (See Figure H).

Step 8:

• Hold the Pen with the needle pointing up. Tap the top of the Pen gently a few times to let any air bubbles rise to the top (See Figure I).

Step 9:

• Hold the Pen with the needle pointing up. Press and hold in the dose button until the dose counter shows “0”. The “0” must line up with the dose pointer.
• A drop of insulin should be seen at the needle tip (See Figure J).
 • If you do not see a drop of insulin, repeat steps 7 to 9, no more than 6 times.
 • If you still do not see a drop of insulin, change the needle and repeat steps 7 to 9.

Step 10:

• Turn the dose selector to select the number of units you need to inject. The dose pointer should line up with your dose (See Figure K).
 • If you select the wrong dose, you can turn the dose selector forwards or backwards to the correct dose.
 • The even numbers are printed on the dial. The odd numbers are shown as lines.

Preparing your Levemir® FlexTouch® Pen:

• Wash your hands with soap and water.
• Before you start to prepare your injection, check the Levemir® FlexTouch® Pen label to make sure you are taking the right type of insulin. This is especially important if you take more than 1 type of insulin.
• Levemir® should look clear and colorless. Do not use Levemir® if it is thick, cloudy, or is colored.
• Do not use Levemir® past the expiration date printed on the label or 42 days after you start using the Pen.
• Always use a new needle for each injection to help ensure sterility and prevent blocked needles. Do not reuse or share your needles with other people. You may give other people a serious infection, or get a serious infection from them.

NovoFine®

Outer needle cap
Inner needle cap
Needle
Paper tab

NovoFine® Plus

Outer needle cap
Inner needle cap
Needle
Paper tab

NovoTwist®

Outer needle cap
Inner needle cap
Needle
Paper tab

Priming your Levemir® FlexTouch® Pen:

Step 7:

• Turn the dose selector to select 2 units (See Figure H).

Step 8:

• Hold the Pen with the needle pointing up. Tap the top of the Pen gently a few times to let any air bubbles rise to the top (See Figure I).

Step 9:

• Hold the Pen with the needle pointing up. Press and hold in the dose button until the dose counter shows “0”. The “0” must line up with the dose pointer.
• A drop of insulin should be seen at the needle tip (See Figure J).
 • If you do not see a drop of insulin, repeat steps 7 to 9, no more than 6 times.
 • If you still do not see a drop of insulin, change the needle and repeat steps 7 to 9.

Step 10:

• Turn the dose selector to select the number of units you need to inject. The dose pointer should line up with your dose (See Figure K).
 • If you select the wrong dose, you can turn the dose selector forwards or backwards to the correct dose.
 • The even numbers are printed on the dial. The odd numbers are shown as lines.

The Levemir® FlexTouch® Pen insulin scale will show you how much insulin is left in your Pen (See Figure L).

• To see how much insulin is left in your Levemir® FlexTouch® Pen:
 • Turn the dose selector until it stops. The dose counter will line up with the number of units of insulin that is left in your Pen. If the dose counter shows 80, there are at least 30 units left in your Pen.
 • If the dose counter shows less than 80, the number shown in the dose counter is the number of units left in your Pen.

Selecting your dose:
Giving your injection:

- Inject your LeveMir® exactly as your healthcare provider has shown you. Your healthcare provider should tell you if you need to pinch the skin before injecting.
- LeveMir® can be injected under the skin (subcutaneously) of your stomach area (abdomen), upper legs (thighs) or upper arms.
- For each injection, change (rotate) your injection site within the area of skin that you use to reduce your risk of getting lipodystrophy (pits in skin or thickened skin) and localized cutaneous amyloidosis (skin with lumps) at the injection site.
- Do not use the same injection site for each injection. Do not inject where the skin has pits, is thickened, or has lumps. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.

Step 11:
- Choose your injection site and wipe the skin with an alcohol swab. Let the injection site dry before you inject your dose (See Figure M).

Step 12:
- Insert the needle into your skin (See Figure N).
 - Make sure you can see the dose counter. Do not cover it with your fingers; this can stop your injection.

Step 13:
- Press and hold down the dose button until the dose counter shows "0" (See Figure O).
 - The "0" must line up with the dose pointer. You may then hear or feel a click.
 - Keep the needle in your skin after the dose counter has returned to "0" and slowly count to 6 (See Figure P).
 - When the dose counter returns to "0", you will not get your full dose until 6 seconds later.
 - If the needle is removed before you count to 6, you may see a stream of insulin coming from the needle tip.
 - If you see a stream of insulin coming from the needle tip you will not get your full dose. If this happens you should check your blood sugar levels more often because you may need more insulin.

Step 14:
- Pull the needle out of your skin (See Figure Q).
 - If you see blood after you take the needle out of your skin, press the injection site lightly with a piece of gauze or an alcohol swab. Do not rub the area.

Step 15:
- Carefully remove the needle from the Pen and throw it away (See Figure R).
 - Do not recap the needle. Recapping the needle can lead to needle stick injury.
 - If you do not have a sharps container, carefully slip the needle into the outer needle cap (See Figure S).
 - Safely remove the needle and throw it away as soon as you can.
 - Do not store the Pen with the needle attached. Storing without the needle attached helps prevent leaking, blocking of the needle, and air from entering the Pen.

Step 16:
- Replace the Pen cap by pushing it straight on (See Figure T).

After your injection:
- You can put your used LeveMir® FlexTouch® Pen and needles in a FDA-cleared sharps disposal container right after use. Do not throw away (dispose of) loose needles and Pens in your household trash.
- If you do not have a FDA-cleared sharps disposal container, you may use a household container that is:
 - made of a heavy-duty plastic
 - can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out
 - upright and stable during use
 - leak-resistant
 - properly labeled to warn of hazardous waste inside the container
 - When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles and syringes. Do not reuse or share your needles or syringes with other people. For more information about safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA’s website at: http://www.fda.gov/safesharpsdisposal.
 - Do not dispose of your used sharps disposal container in your household trash unless your community guidelines permit this.
 - Do not recycle your used sharps disposal container.

How should I store my LeveMir® FlexTouch® Pen?
- Store unused LeveMir® FlexTouch® Pens in the refrigerator at 36°F to 46°F (2°C to 8°C).
- Store the Pen you are currently using out of the refrigerator below 86°F.
- Do not freeze LeveMir®. Do not use LeveMir® if it has been frozen.