HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use SAXENDA® safely and effectively. See full prescribing information for SAXENDA®.

SAXENDA® (liraglutide) injection, for subcutaneous use

Initial U.S. Approval: 2010

WARNING: RISK OF THYROID C-CELL TUMORS
See full prescribing information for complete boxed warning.

• Liraglutide causes thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether SAXENDA® causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as the human relevance of liraglutide-induced rodent thyroid C-cell tumors has not been determined (5.1).

• SAXENDA® is contraindicated in patients with a personal or family history of MTC or in patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). Counsel patients regarding the potential risk of MTC and the symptoms of thyroid tumors (4, 5.1, 13.1).

DOSAGE AND ADMINISTRATION

Inject SAXENDA® subcutaneously in the abdomen, thigh, or upper arm once daily at any time of day, without regard to the timing of meals (2.2).

• The recommended dose of SAXENDA® is 3 mg daily (2.3).

• Initiate at 0.6 mg per day for one week. In weekly intervals, increase the dose until a dose of 3 mg is reached (2.3).

• If pediatric patients do not tolerate an increased dose during dose escalation, the dose may also be lowered to the previous level. Dose escalation for pediatric patients may take up to 6 weeks (2.3).

• Pediatric patients who do not tolerate 3 mg daily may have their dose reduced to 2.4 mg daily (2.3).

• Adult patients with type 2 diabetes should monitor blood glucose prior to starting SAXENDA® and during SAXENDA® treatment (2.3).

DOSAGE FORMS AND STRENGTHS

Injection: 6 mg/mL solution in a 3 mL pre-filled, single-patient-use pen that delivers doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg (3).

CONTRAINdications

• Personal or family history of medullary thyroid carcinoma or Multiple Endocrine Neoplasia syndrome type 2 (4, 5.1).

• Hypersensitivity to liraglutide or any excipients in SAXENDA® (4, 5.7).

• Pregnancy (4, 8.1).

WARNINGS AND PRECAUTIONS

• Thyroid C-cell Tumors: See Boxed Warning (5.1).

• Acute Pancreatitis: Discontinue promptly if pancreatitis is suspected. Do not restart if pancreatitis is confirmed (5.2).

• Acute Gallbladder Disease: If cholelithiasis or cholecystitis are suspected, gallbladder studies are indicated (5.3).

• Hypoglycemia: Can occur in adults when SAXENDA® is used with an insulin secretagogue (e.g. a sulfonylurea) or insulin. The risk may be lowered by a reduction in the dose of concomitantly administered insulin secretagogues or insulin. In the pediatric clinical trial, patients did not have type 2 diabetes. Hypoglycemia occurred in SAXENDA®-treated pediatric patients. Inform all patients of the risk of hypoglycemia and educate them on the signs and symptoms of hypoglycemia (2, 5.4).

• Heart Rate Increase: Monitor heart rate at regular intervals (5.5).

• Renal Impairment: Has been reported postmarketing, usually in association with nausea, vomiting, diarrhea, or dehydration which may sometimes require hemodialysis. Use caution when initiating or escalating doses of SAXENDA® in patients with renal impairment (5.6).

• Hypersensitivity Reactions: Postmarketing reports of serious hypersensitivity reactions (e.g., anaphylactic reactions and angioedema). Discontinue SAXENDA® and other suspect medications and promptly seek medical advice (5.7).

• Suicidal Behavior and Ideation: Monitor for depression or suicidal thoughts. Discontinue SAXENDA® if symptoms develop (5.8).

ADVERSE REACTIONS

Most common adverse reactions, reported in greater than or equal to 5% are: nausea, diarrhea, constipation, vomiting, injection site reactions, headache, hypoglycemia, dyspepsia, fatigue, diziness, abdominal pain, increased lipase, upper abdominal pain, pyrexia, and gastroenteritis (6.1).

To report SUSPECTED ADVERSE REACTIONS, contact Novo Nordisk Inc. at 1-844-363-4448 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS

• SAXENDA® delays gastric emptying. May impact absorption of concomitantly administered oral medications. Use with caution (7).

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide.

Revised: 04/2023
SAXENDA® (liraglutide) injection 3mg

FULL PRESCRIBING INFORMATION

WARNING: RISK OF THYROID C-CELL TUMORS

- Liraglutide causes dose-dependent and treatment-duration-dependent thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. It is unknown whether SAXENDA® causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans, as the human relevance of liraglutide-induced rodent thyroid C-cell tumors has not been determined [see Warnings and Precautions (5.1) and Nonclinical Toxicology (13.1)].

- SAXENDA® is contraindicated in patients with a personal or family history of MTC and in patients with Multiple Endocrine Neoplasia syndrome type 2 (MEN 2). Counsel patients regarding the potential risk of MTC with use of SAXENDA® and inform them of symptoms of thyroid tumors (e.g., a mass in the neck, dysphagia, dyspnea, persistent hoarseness). Routine monitoring of serum calcitonin or using thyroid ultrasound is of uncertain value for early detection of MTC in patients treated with SAXENDA® [see Contraindications (4), Warnings and Precautions (5.1)].

1 INDICATIONS AND USAGE

SAXENDA® is indicated as an adjunct to a reduced-calorie diet and increased physical activity for chronic weight management in:

- Adult patients with an initial body mass index (BMI) of [see Dosage and Administration (2.2)]
 - ≥30 kg/m² or greater (obese), or
 - ≥27 kg/m² or greater (overweight) in the presence of at least one weight-related comorbid condition (e.g., hypertension, type 2 diabetes mellitus, or dyslipidemia)

- Pediatric patients aged 12 years and older who:
 - Body weight ≥60 kg and
 - Have an initial BMI corresponding to ≥30 kg/m² or greater for adults (obese) by international cut-offs (Cote Criteria, Table 2) [see Dosage and Administration (2.1)]

Limitations of Use:

- SAXENDA® contains liraglutide and should not be coadministered with other liraglutide-containing products or with any other GLP-1 receptor agonist.

- The safety and effectiveness of SAXENDA® in pediatric patients with type 2 diabetes have not been established.

- The safety and effectiveness of SAXENDA® in combination with other products intended for weight loss, including prescription drugs, over-the-counter drugs, and herbal preparations, have not been established.

2 DOSAGE AND ADMINISTRATION

2.1 Patient Selection

Select patients for SAXENDA® treatment as an adjunct to a reduced-calorie diet and increased physical activity for chronic weight management based on the BMI values provided in Tables 1 and 2.

- Adult Patients
 - For adults, the recommended dosage of SAXENDA® is 3 mg daily, lower doses are for titration only.
 - Discontinue SAXENDA® if the patient cannot tolerate the 3 mg dose.
 - If patients do not tolerate an increased dose during dose escalation, consider delaying dose escalation for approximately one additional week.
 - Evaluate the change in body weight 16 weeks after initiating SAXENDA® and discontinue SAXENDA® if the patient has not lost at least 4% of baseline body weight, since it is unlikely that the patient will achieve and sustain clinically meaningful weight loss with continued treatment.
 - In adult patients with type 2 diabetes, monitor blood glucose prior to starting SAXENDA® and during SAXENDA® treatment.

- Pediatric Patients
 - For pediatric patients, the recommended maintenance dosage of SAXENDA® is 3 mg daily. Pediatric patients who do not tolerate 3 mg daily may have their maintenance dose reduced to 2.4 mg daily. Discontinue SAXENDA® if the patient cannot tolerate the 2.4 mg dose.
 - If pediatric patients do not tolerate an increased dose during dose escalation, the dose may also be lowered to the previous dose.
 - Evaluate the change in BMI after 12 weeks on the maintenance dose.

2.2 Important Administration Instructions

- Prior to initiation of SAXENDA®, train patients on proper injection technique. Refer to the accompanying instructions for Use for complete administration instructions with illustrations.

- Inspect SAXENDA® visually prior to each injection. Only use if solution is clear, colorless, and contains no particles.

- Inject SAXENDA® subcutaneously once daily at any time of day, without regard to the timing of meals.

- Inject SAXENDA® subcutaneously in the abdomen, thigh, or upper arm. No dose adjustment is needed if changing the injection site and/or timing.

- Rotate injection sites within the same region in order to reduce the risk of cutaneous amyloidosis [see Adverse Reactions (6.2)].

- If a dose is missed, resume the once-daily regimen as prescribed with the next scheduled dose. Do not administer an extra dose or increase the dose to make up for the missed dose.

- If more than 3 days have elapsed since the last SAXENDA® dose, reinitiate SAXENDA® at 0.6 mg daily and follow the dose escalation schedule in Table 3, to reduce the occurrence of gastrointestinal adverse reactions associated with reinitiation of treatment.

2.3 Dosage in Adults and Pediatric Patients Aged 12 Years and Older

- Adult Patients
 - If pediatric patients do not tolerate an increased dose during dose escalation, the dose may also be lowered to the previous dose.
 - Evaluate the change in BMI after 12 weeks on the maintenance dose.

- Pediatric Patients
 - If pediatric patients do not tolerate an increased dose during dose escalation, the dose may also be lowered to the previous dose. Dose escalation for pediatric patients may take up to 6 weeks.
 - Evaluate the change in BMI after 12 weeks on the maintenance dose.

Pediatric Patients Aged 12 Years and Older

BMI cut-offs for obesity in pediatric patients aged 12 years and older are presented in Table 2.

Table 1. BMI Conversion Chart

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>Height (in)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>58</td>
<td>147.3</td>
<td>164</td>
</tr>
<tr>
<td>130</td>
<td>59.1</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>135</td>
<td>61.4</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>140</td>
<td>63.6</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>145</td>
<td>65.9</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>150</td>
<td>68.2</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>155</td>
<td>70.5</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>160</td>
<td>72.7</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>165</td>
<td>75.0</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>170</td>
<td>77.3</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>175</td>
<td>79.5</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>180</td>
<td>81.8</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>185</td>
<td>84.1</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>190</td>
<td>86.4</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>195</td>
<td>88.6</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>200</td>
<td>90.9</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>205</td>
<td>93.2</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>210</td>
<td>95.5</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>215</td>
<td>97.7</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>220</td>
<td>100.0</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>225</td>
<td>102.3</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 2: International Obesity Task Force BMI Cut-offs for Obesity by Sex and Age for Pediatric Patients Aged 12 Years and Older (Cote Criteria)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Body mass index 30 kg/m²</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>26.02</td>
<td>26.67</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>26.43</td>
<td>27.24</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26.84</td>
<td>27.76</td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>27.25</td>
<td>28.20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>27.63</td>
<td>28.57</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>27.98</td>
<td>28.87</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28.30</td>
<td>29.11</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>28.60</td>
<td>29.29</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>28.88</td>
<td>29.43</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>29.14</td>
<td>29.56</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>29.41</td>
<td>29.69</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>29.70</td>
<td>29.84</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Dose Escalation Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6 mg</td>
</tr>
<tr>
<td>2</td>
<td>1.2 mg</td>
</tr>
<tr>
<td>3</td>
<td>1.8 mg</td>
</tr>
<tr>
<td>4</td>
<td>2.4 mg</td>
</tr>
<tr>
<td>5 and onward</td>
<td>3 mg</td>
</tr>
</tbody>
</table>
3.5 Hypoglycemia

Adult patients with type 2 diabetes mellitus on an insulin secretagogue (e.g., sulfonylurea) or insulin may have an increased risk of hypoglycemia. [See Adverse Reactions (4.10)].

Hypoglycemia occurs in patients receiving SAXENDA® and may be criteria diabetics or those with clinical features of hypoglycemia. The risk of hypoglycemia may be lowered in the dose of sulfonylurea (or other concomitantly administered insulin secretagogues) or insulin. Inform patients using these concomitant medications of the risk of hypoglycemia and educate them on the signs and symptoms of hypoglycemia.

In the pediatric clinical trial, patients did not have type 2 diabetes but were provided with blood glucose meters. Clinically significant hypoglycemia, defined as blood glucose <54 mg/dL, occurred in 1.2% of patients treated with SAXENDA® compared to 0% of placebo-treated patients [See Adverse Reactions (6.1)]. Inform all pediatric patients of the risk of hypoglycemia and educate them on the signs and symptoms of hypoglycemia.

5.5 Heart Rate Increase

Mean increases in resting heart rate of 2 to 3 beats per minute (bpm) were observed with routine clinical monitoring in SAXENDA®-treated adult patients compared to placebo in clinical trials. More patients treated with SAXENDA®, compared with placebo, had changes from baseline at two consecutive visits of more than 10 bpm (34% versus 19%, respectively) and 20 bpm (5% versus 2%, respectively). At least one resting heart rate exceeding 100 bpm was recorded for 6% of SAXENDA®-treated patients compared with 4% of placebo-treated patients. No patients had resting heart rate studies for 0.9% and 0.3%, respectively. Tachycardia was reported as an adverse reaction in 0.6% of SAXENDA®-treated patients and in 0.1% of placebo-treated patients.

In a pediatric pharmacology trial that monitored heart rate continuously for 24 hours, SAXENDA®-treated patients were associated with a heart rate that was 4 to 9 bpm higher than that observed with placebo.

In a pediatric clinical trial, mean increases from baseline in resting heart rate were 10 bpm (34% versus 19%, respectively) and 20 bpm (5% versus 2%, respectively). At least one resting heart rate exceeding 100 bpm was recorded for 6% of SAXENDA®-treated patients compared with 4% of placebo-treated patients. No patients had resting heart rate studies for 0.9% and 0.3%, respectively. Tachycardia was reported as an adverse reaction in 0.6% of SAXENDA®-treated patients and in 0.1% of placebo-treated patients.

5.6 Renal Impairment

In patients treated with GLP-1 receptor agonists, including SAXENDA®, there have been reports of acute renal failure and worsening of chronic renal failure, sometimes requiring hemodialysis [See Adverse Reactions (6.2)]. Some of these events were reported in patients without known underlying renal disease. A majority of the reported events occurred in patients who had experienced nausea, vomiting, or diarrhea leading to volume depletion. Some of the reported events occurred in patients receiving one or more medications known to affect renal function or volume status. Altered renal function has been reversed in many cases. Some of the reported cases with support for spontaneous recovery and continuation of potentially causative agents, including liraglutide. Use caution when initiating or escalating doses of SAXENDA® in patients with renal impairment [See Use in Specific Populations (8.6)].

There have been reports of serious hypersensitivity reactions (e.g., anaphylactic reactions and angioedema) in patients treated with SAXENDA® (See Contraindications (4) and Adverse Reactions (6.2)). If a hypersensitivity reaction occurs, the patient should discontinue SAXENDA® and other suspect medications and promptly seek medical advice.

Anaphylaxis and angioedema have been reported with other GLP-1 receptor agonists. Use caution in a patient with a history of anaphylaxis or angioedema with another GLP-1 receptor agonist because it is unknown whether such patients will be predisposed to these reactions with SAXENDA®.
In adults, saxagliptin treatment was generally well tolerated, with similar incidences of adverse reactions reported across treatment groups. The most common adverse reactions reported in clinical trials were gastrointestinal disorders, such as nausea, vomiting, and diarrhea, occurring at a higher incidence among saxagliptin-treated patients compared with placebo. Other adverse reactions, such as hypoglycemia, have also been reported in clinical trials. saxagliptin injection 3mg

1. The most common reactions, each reported by 1% to 2% of saxagliptin-treated patients and more commonly than by placebo-treated patients, included eructation, pruritus, and rash at the injection site.

2. Defined as blood glucose <54 mg/dL with or without symptoms of hypoglycemia in patients with type 2 diabetes not on concomitant insulin (Study 2, saxagliptin N=423, Placebo N=212). See text below for further information regarding hypoglycemia in patients with and without type 2 diabetes. T2DM = type 2 diabetes mellitus

Table 5. Adverse Reactions Occurring in ≥3% of SAXENDA®-treated Pediatric Patients and More Frequently Than Placebo in a 56 Week Clinical Trial

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Placebo N = 126</th>
<th>SAXENDA® N = 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>14.3</td>
<td>42.4</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4.0</td>
<td>34.4</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>14.3</td>
<td>22.4</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>4.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>4.8</td>
<td>12.8</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3.2</td>
<td>10.4</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>7.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>0.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Constipation</td>
<td>2.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Cough</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Depression</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Infection site pain</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Flatulence</td>
<td>0.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Increased Blood Creatine Kinase</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Increased Lipase</td>
<td>0.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Rash</td>
<td>0.0</td>
<td>3.2</td>
</tr>
</tbody>
</table>

3. Defined as blood glucose <70 mg/dL with symptoms of hypoglycemia. Pediatric patients did not have type 2 diabetes mellitus. See text below for more detailed hypoglycemia information in placebo-treated patients.

Hypoglycemia

Adult Patients with Type 2 Diabetes

In a clinical trial in adult patients with type 2 diabetes mellitus and overweight (excess weight) or obesity, severe hypoglycemia defined as requiring the assistance of another person, occurred in 3 (0.7%) of 422 saxagliptin-treated patients (all taking a sulfonylurea) and in none of the 212 placebo-treated patients. In this trial, among patients taking a sulfonylurea, hypoglycemia defined as a plasma glucose less than 54 mg/dL with or without symptoms occurred in 31 (28.2%) of 110 saxagliptin-treated patients and 7 (12.7%) of 55 placebo-treated patients. The doses of sulfonylureas were reduced by 50% at the beginning of the trial per protocol. Among patients not taking a sulfonylurea, blood glucose less than 54 mg/dL with or without symptoms occurred in 22 (71%) of 312 saxagliptin-treated patients and 7 (4.5%) of 157 placebo-treated patients.

In a saxagliptin clinical trial in adult patients with overweight (excess weight) or obesity type 2 diabetes mellitus treated with basal insulin and saxagliptin in combination with a reduced-calorie diet and increased physical activity and up to 2 oral anti-diabetes medications, severe hypoglycemia was reported by 3 (1.5%) of 195 saxagliptin-treated patients and 2 (1.0%) of 197 placebo-treated patients. No meaningful difference in hypoglycemia, defined as blood glucose less than 54 mg/dL with or without symptoms, was reported between groups.

Adult Patients without Type 2 Diabetes

In saxagliptin clinical trials in adult patients without type 2 diabetes mellitus, there was no systematic capturing or reporting of hypoglycemia; patients were not provided with blood glucose meters or hypoglycemia diaries. Spontaneously reported symptomatic episodes of unconfirmed hypoglycemia were reported by 46 (1.6%) of 2962 saxagliptin-treated patients and 19 (1.1%) of 1729 placebo-treated patients. Fasting plasma glucose values obtained at routine clinic visits less than 54 mg/dL, irrespective of hypoglycemic symptoms, occurred in 2 (0.1%) saxagliptin-treated patients and 1 (0.1%) placebo-treated patients.

Pediatric Patients without Type 2 Diabetes

In a 56-week placebo-controlled clinical trial of pediatric patients without type 2 diabetes mellitus in which blood glucose meters were provided, 19 (15.2%) of saxagliptin-treated patients had hypoglycemia with a blood glucose less than 70 mg/dL with symptoms as compared to 5 (4.0%) of placebo-treated patients. Four (4) episodes of hypoglycemia defined as a plasma glucose less than 54 mg/dL occurred in 2 (1.6%) of 125 saxagliptin-treated pediatric patients compared with 0 (0.0%) of 126 placebo-treated patients. No severe hypoglycemic episodes, defined as requiring assistance of another person to actively administer carbohydrate, glucagon, or other resuscitative actions, occurred in the saxagliptin-treated pediatric patients.

Gastrointestinal Adverse Reactions

Table 5. Adverse Reactions Occurring in ≥3% of SAXENDA®-treated Pediatric Patients and More Frequently Than Placebo in a 56 Week Clinical Trial

Colorectal Neoplasms

In saxagliptin clinical trials in adults, benign colorectal neoplasms (mostly colon adenomas) confirmed by adjudication were reported in 20 (0.6%) of 3291 saxagliptin-treated patients compared with 7 (0.2%) of placebo-treated patients. Six positively adjudicated cases of malignant colorectal neoplasms were reported in 5 saxagliptin-treated patients (0.2%, mostly adenocarcinomas) and 1 in a placebo-treated patient (0.1%, neuroendocrine tumor of the rectum).

Cardiac Conduction Disorders

In saxagliptin clinical trials in adults, 11 (0.3%) of 3384 saxagliptin-treated patients compared with none of the 1941 placebo-treated patients had a cardiac conduction disorder, reported as first degree atrioventricular block, right bundle branch block, or left bundle branch block.

Hypotension

Adverse reactions related to hypotension (hypotensive, orthostatic hypotension, circulatory collapse, and decreased blood pressure) were reported more frequently with saxagliptin (1.1%) compared with placebo (0.5%) in saxagliptin clinical trials in adults. Systolic blood pressure decreases to less than 80 mmHg were observed in 4 (0.1%) saxagliptin-treated patients compared with no placebo-treated patients. One of the saxagliptin-treated patients had severe hypotension as associated with gastrointestinal adverse reactions and renal failure (see Warnings and Precautions (5.6)).

Laboratory Abnormalities

Liver Enzymes

Increases in alanine aminotransferase (ALT) greater than or equal to 10 times the upper limit of normal were observed in 5 (0.1%) saxagliptin-treated patients (2 of whom had ALT greater than 20 times the upper limit of normal) compared with 0 (0.0%) placebo-treated patient during the saxagliptin clinical trials. Because clinical evaluation to exclude alternative causes of ALT and aspartate transaminase (AST) increase was not done in most cases, the relationship to saxagliptin is uncertain. Some increases in ALT and AST were associated with other confounding factors (such as gallstones).

Serum Calcium

An increased level of inorganic ionized calcium, a biochemical marker of MTC, was measured throughout the clinical development program (see Warnings and Precautions (5.1)). More patients treated with saxagliptin in the clinical trials were observed to have high calcium values during treatment.

Serum Lipase and Amylase

Lipase and amylase were routinely measured in the saxagliptin clinical trials. One saxagliptin-treated patient (0.2%) had a lipase value at anytime during treatment of greater than 3 times the upper limit of normal versus 0.1% of placebo-treated patients. Among patients with pretreatment serum calcium in greater than or equal to 2 times the upper limit of normal at the end of the trial, 1.2% in saxagliptin-treated patients and 0.6% in placebo-treated patients. Calcium values greater than 20 mg/L at the end of the trial occurred in 0.5% of saxagliptin-treated patients and 0.2% of placebo-treated patients. Among patients with pretreatment serum calcium in greater than or equal to 2 times the upper limit of normal at the end of the trial, 1.2% in saxagliptin-treated patients and 0.6% in placebo-treated patients. The clinical significance of elevations in lipase or amylase with saxagliptin is unknown in the absence of other signs and symptoms of pancreatitis (see Warnings and Precautions (5.2)).

6.2 Post-Marketing Experience

The following adverse reactions have been reported during post-approval use of saxagliptin, the active ingredient of SAXENDA.

Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Neoplasms

Medullary thyroid carcinoma

Gastrointestinal Disorders

Acute pancreatitis, hemorrhagic and necrotizing pancreatitis, sometimes resulting in death

Metabolism and Nutrition Disorders

Dehydration resulting from nausea, vomiting and diarrhea

Renal and Urinary Disorders

Increased serum creatinine, acute renal failure or worsening of chronic renal failure, sometimes requiring hemodialysis

Endocrine and Metabolic Disorders

Hypoglycemia

Skin and Subcutaneous Tissue Disorders

Cutaneous amyloidosis
SAXENDA® (liraglutide) injection 3mg

7 DRUG INTERACTIONS
7.1 Oral Medications
SAXENDA® causes a delay of gastric emptying, and thereby has the potential to impact the absorption of concomitantly administered oral medications. In preclinical pharmacokinetical trials, liraglutide did not affect the absorption of the tested orally administered medications to any clinically relevant degree. Nonetheless, monitor for potential consequences of delayed absorption of oral medications concomitantly administered with SAXENDA®.

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Risk Summary
SAXENDA® is contraindicated during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in the loss of a viable fetus. There are no data on the use of SAXENDA® in pregnant women to inform a drug-associated risk for major birth defects and miscarriage. SAXENDA® should not be used during pregnancy. If a patient wishes to become pregnant, or pregnancy occurs, treatment with SAXENDA® should be discontinued.

Animal reproduction studies identified increased adverse embryo-fetal developmental outcomes from exposure during pregnancy. Liraglutide exposure was associated with early embryonic deaths and a decrease in body weight in some fetuses. Pregnant rats administered liraglutide during organogenesis at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 3 mg/day. In pregnant rabbits administered liraglutide during organogenesis, decreased fetal weights and increased skeletal variations occurred in the skull and jaw, vertebrae and ribs, sternum, pelvis, forelimb, and scapula; and dose-dependent minor skeletal variations occurred in the kidneys, scapula, greater than or equal to 0.01 mg/kg/day (eyes, forelimb), 0.025 mg/kg/day (brain, tail and sacral vertebrae, major visceral organs, and/or major skeletal abnormalities occurred in the skull and jaw, vertebrae and ribs, sternum, pelvis, tail, and scapula; and dose-dependent minor skeletal variations were observed. Visceral abnormalities occurred in blood vessels, lungs, colon, and/or skeletal abnormalities occurred in the skull and jaw, vertebrae and ribs, sternum, pelvis, tail, and scapula; and dose-dependent minor skeletal variations were observed. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for SAXENDA® and any potential adverse effects on the breastfed infant from liraglutide. See Pregnancy (8.1) and from the underlying maternal condition.

In latching rats, liraglutide was present unchallenged in milk at concentrations approximately 50% of maternal plasma concentrations.

8.4 Pediatric Use
The safety and effectiveness of SAXENDA® as an adjunct to a reduced-calorie diet and increased physical activity for chronic weight management have been established in pediatric patients aged 12 years and older with body weight above 60 kg and an initial BMI corresponding to 30 kg/m² or greater for adults (obese) or international percentiles (see Table 2). Use of SAXENDA® for this indication is supported by a 56-week double-blind, placebo-controlled clinical trial in 251 pediatric patients aged 12 to 17 years, a pharmacokinetic study in pediatric patients, and studies in adults (7.1). See Clinical Pharmacology (12.3) and Clinical Studies (H14,14,22).

In the pediatric clinical trial, there was one death due to suicide in a SAXENDA®-treated patient (see Warnings and Precautions (5.8)); one SAXENDA®-treated patient had an event of pancreatitis (see Warnings and Precautions (5.2)); two episodes of hypoglycemia (severe and moderate) occurred in patients treated with liraglutide 3 mg/day (see Warnings and Precautions (5.4) and Adverse Reactions (6.1)); and mean increases in resting heart rate of 3 to 7 bpm from baseline were observed with SAXENDA®-treated patients (see Warnings and Precautions (5.5)).

The safety and effectiveness of SAXENDA® have not been established in patients less than 12 years of age.

8.5 Geriatric Use
In the SAXENDA® clinical trials, 232 (6.9%) of the SAXENDA®-treated patients were 65 years of age and over, and 17 (0.5%) of the SAXENDA®-treated patients were 75 years of age and over. No overall differences in safety or effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

8.6 Renal Impairment
The pharmacokinetic profiles of liraglutide [see Pharmacokinetics (12.3)] and total major abnormalities in rabbits at systemic exposures 0.8- and 3- times systemic exposures in obese humans resulting from the exposure in obese humans at the MRHD based on plasma AUC comparison. In pregnant rabbits administered liraglutide during organogenesis, decreased fetal weights and increased total major abnormalities in rabbits at systemic exposures 0.8-, 3- and 11-times systemic exposures in obese humans resulting from the exposure in obese humans at the MRHD based on plasma AUC comparison. The number of early embryonic deaths in the 1 mg/kg/day group increased proportionally in the dose range of 0.6 mg/kg/day. The effect of liraglutide on cardiac repolarization was tested in a QTc Cardiac Electrophysiology (QTc) in healthy volunteers. Liraglutide at steady-state concentrations after daily doses of 0.6 mg/kg/day did not produce QTc prolongation. However, there have been postmarketing reports of acute renal failure and worsening of chronic renal failure with liraglutide, although the causative relationship has not been established. There is limited experience with SAXENDA® in patients with mild, moderate, or severe renal impairment, including end-stage renal disease. However, there have been postmarketing reports of acute renal failure and worsening of chronic renal failure with liraglutide, although the causative relationship has not been established. There is limited experience with SAXENDA® in patients with mild, moderate, or severe renal impairment, including end-stage renal disease. However, there have been postmarketing reports of acute renal failure and worsening of chronic renal failure with liraglutide, although the causative relationship has not been established. There is limited experience with SAXENDA® in patients with mild, moderate, or severe renal impairment, including end-stage renal disease. However, there have been postmarketing reports of acute renal failure and worsening of chronic renal failure with liraglutide, although the causative relationship has not been established.

8.7 Hepatic Impairment
SAXENDA® Slow gastric emptying. SAXENDA® has not been studied in patients with de-existing gastrointestinal conditions.

8.10 Overdose
Overdoses have been reported in clinical trials and post-marketing use of liraglutide. Effects have included severe nausea, severe vomiting and severe hypoglycemia. In the event of overdose, appropriate supportive treatment should be initiated according to the patient’s clinical signs and symptoms.

11 DESCRIPTION
SAXENDA® contains liraglutide, an analog of human GLP-1 and acts as a GLP-1 receptor agonist. The peptide precursor of liraglutide, produced by a process that includes expression of recombinant DNA in Saccharomyces cerevisiae, has been engineered to be 97% homologous to native human GLP-1 by substituting arginine for lysine residue at position 26 of the peptide precursor. The molecular formula of liraglutide is C172H236O52N55S5, and the molecular weight is 3751.2 Daltons. The structural formula (Figure 1) is shown.
of a single dose of liraglutide is approximately 0.9-1.4 L/h with an elimination half-life of approximately 13 hours, making liraglutide suitable for once daily administration.

Specific Populations

Effect on Aging - There was no effect on the pharmacokinetics of liraglutide based on a pharmacokinetic study in healthy elderly subjects (65 to 83 years) and population pharmacokinetic analyses of data from overweight and obese patients 18 to 82 years of age (see Use in Specific Populations [8.5]).

Gender - Based on the results of population pharmacokinetic analyses, females have 24% lower weight adjusted clearance of SAXENDA® compared to males.

Race and Ethnicity - Race and ethnicity had no effect on the pharmacokinetics of liraglutide based on the results of population pharmacokinetic analyses that included overweight and obese patients of Caucasian, Black, Asian and Hispanic/Nondiabetic groups.

Body Weight - Body weight significantly affects the pharmacokinetics of liraglutide based on the results of population pharmacokinetic analyses conducted in patients with body weight range of 60-234 kg. The exposure of liraglutide decreases as baseline body weight increases.

Pediatric - A population pharmacokinetic analysis was conducted for SAXENDA® using data from 134 pediatric patients (12 to 17 years of age) with obesity. The liraglutide exposure in the pediatric patients was similar to that in adults with obesity (see Use in Specific Populations [8.4]).

Renal Impairment - The single-dose pharmacokinetics of liraglutide were not significantly affected by varying degrees of renal impairment. Patients with mild (estimated creatinine clearance 50–80 mL/min) to severe (estimated creatinine clearance less than 30 mL/min) renal impairment and patients with end-stage renal disease requiring dialysis were included in the trial. Compared to healthy subjects, liraglutide AUC in mild, moderate, and severe renal impairment and in end-stage renal disease was on average 35%, 19%, 29% and 30% lower, respectively (see Use in Specific Populations [8.6]).

Hepatic Impairment - The single-dose pharmacokinetics of liraglutide were evaluated in patients with varying degrees of hepatic impairment. Patients with mild (Child Pugh score 5-6) to severe (Child Pugh score greater than 9) hepatic impairment were included in the trial. Compared to healthy subjects, liraglutide AUC in subjects with moderate and severe hepatic impairment was on average 11%, 14% and 42% lower, respectively (see Use in Specific Populations [8.7]).

Drug Interactions

In vivo assessment of drug–drug interactions

Liraglutide has low potential for pharmacokinetic drug–drug interactions related to cytochrome P450 (CYP) and plasma protein binding.

In vivo assessment of drug–drug interactions

The drug-drug interaction studies were performed at steady state with a single dose of liraglutide 0.6 mg daily for 7 days. The steady state was equivalent between liraglutide 1.8 mg and 3 mg (acetaminophen AUC 1.0–3.0×). Administration of the interacting drugs was timed so that Cmax of liraglutide (6-12 h) would coincide with the absorption peak of the co-administered drugs.

Oral contraceptive interaction

A single dose of an oral contraceptive combination product containing 0.03 mg ethinylestradiol and 0.15 mg levonorgestrel was administered under fed conditions and 7 hours after the dose of liraglutide at steady state. Liraglutide lowered ethinylestradiol and levonorgestrel Cmax by 12% and 13%, respectively. There was no effect of liraglutide on the overall exposure (AUC) of ethinylestradiol. Liraglutide increased the levonorgestrel AUC∞ by 18%. Liraglutide delayed Tmax for both ethinylestradiol and levonorgestrel by 15 h.

Digoxin

A single dose of digoxin 1 mg was administered 7 hours after the dose of liraglutide at steady state. The co-administration with liraglutide resulted in a reduction of digoxin AUC by 16%, Cmax decreased by 31%. Digoxin median time to maximal concentration (Tmax) was delayed from 1 h to 1.5 h.

Lisinopril

A single dose of lisinopril 20 mg was administered 5 minutes after the single dose of liraglutide 0.6 mg/day. The co-administration with liraglutide resulted in a reduction of lisinopril AUC by 15%, Cmax decreased by 27%. Lisinopril median Tmax was delayed from 6 h to 8 h with liraglutide.

Acetaminophen

Liraglutide did not change the overall exposure (AUC) of acetaminophen following a single dose of acetaminophen 40 mg, administered 5 hours after the dose of liraglutide at steady state. Atorvastatin Cmax was decreased by 38% and median Tmax was delayed from 1 h to 3 h with liraglutide.

Acetaminophen

Liraglutide did not change the overall exposure (AUC) of acetaminophen following a single dose of acetaminophen 1000 mg, administered 8 hours after the dose of liraglutide at steady state. Acetaminophen Cmax was decreased by 31% and median Tmax was delayed up to 15 minutes.

Griseofulvin

Liraglutide did not change the overall exposure (AUC) of griseofulvin in following a single dose of griseofulvin 500 mg with liraglutide at steady state. Griseofulvin Cmax increased by 37% while median Tmax did not change.

Insulin Detemir

No pharmacokinetic interaction was observed between liraglutide and insulin detemir when separate subcutaneous injections of insulin detemir 0.5 Unit/kg (single-dose) and liraglutide 1.8 mg (steady state) were administered to patients with type 2 diabetes mellitus.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenicity, Mutagenesis, Impairment of Fertility

A 104-week carcinogenicity study was conducted in male and female CD-1 mice at doses of 0.03, 0.2, 1, and 3 mg/kg/day following a single dose of liraglutide for 0.2, 2, 10- and 43-times the exposure in obese humans, respectively, at the maximum recommended human dose (MRHD) of 3 mg/day based on plasma AUC comparison. A dose-related increase in benign thyroid tumors was seen in the 1 and the 3 mg/kg/day groups with incidences of 13% and 19% in males and 6% and 20% in females, respectively. C-cell adenomas did not occur in control groups or 0.03 or 0.2 mg/kg/day groups. Treatment-related malignant C-cell carcinomas were observed in 0.2 mg/kg/day group. Thyroid C-cell tumors are rare findings during carcinogenicity testing in mice. A treatment-related increase in fibrinogen was seen on the dorsal skin and subcutis, the body surface used for drug injection, in males treated with liraglutide at all doses and in females treated with the high local concentration of drug near the injection site. The liraglutide concentration in the clinical formulation used to co-administer drugs with liraglutide at 1 mg/kg/day liraglutide to mice in the carcinogenicity study (0.6 mg/mL).

A 104-week carcinogenicity study was conducted in male and female Sprague Dawley rats at doses of 0.075, 0.25 and 0.75 mg/kg/day. In the 0.75 mg/kg/day group, thyroid C-cell tumors are rare findings during carcinogenicity testing in rats. A treatment-related increase in hemoglobin was seen on the dorsal skin and subcutis, the body surface used for drug injection, in males treated with liraglutide at all doses and in females treated with the high local concentration of drug near the injection site. The liraglutide concentration in the clinical formulation used to co-administer drugs with liraglutide at 1 mg/kg/day liraglutide to rats in the carcinogenicity study (0.6 mg/mL).

For Study 1 and Study 2, the primary efficacy parameters were mean percent change in body weight and the percentages of patients achieving greater than or equal to 5% and 10% weight loss from baseline to week 56. For Study 3, the primary efficacy parameters were mean percent change in body weight from randomization to week 56, the percentage of patients not gaining more than 5% body weight from randomization (i.e., after run-in) to week 56, and the percentage of patients achieving greater than or equal to 5% weight loss from randomization to week 56. Because losing at least 5% of fasting body weight through lifestyle intervention during the 4–12-week run-in was a condition for their continued participation in the randomized treatment period, the results may not reflect those expected in the general population.

Table 6 presents the results for the changes in weight observed in Studies 1, 2, and 3. After 56 weeks, treatment with SAXENDA® resulted in a statistically significant reduction in weight compared with placebo. Statistically significantly greater proportions of patients treated with SAXENDA® achieved 5% and 10% weight loss than those treated with placebo. In Study 3, statistically significantly more patients randomized to SAXENDA® than placebo lost more than 5% of body weight from randomization to week 56.
Table 6. Changes in Weight at Week 56 for Studies 1, 2, and 3

<table>
<thead>
<tr>
<th>Study</th>
<th>Obese or overweight with comorbidity</th>
<th>Type 2 diabetes with obesity or overweight</th>
<th>Obesity or overweight following at least 5% weight loss with diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saxenda® N=2487</td>
<td>Placebo N=1244</td>
<td>Saxenda® N=423</td>
</tr>
<tr>
<td>Weight</td>
<td>Baseline mean (SD) (kg)</td>
<td>106.2 (21.2)</td>
<td>106.2 (21.7)</td>
</tr>
<tr>
<td>Percent change from baseline (LSMean)</td>
<td>-7.4</td>
<td>-3.0</td>
<td>-5.4</td>
</tr>
<tr>
<td>Difference from placebo (LSMean) (95% CI)</td>
<td>-4.5 (-5.2, -3.8)</td>
<td>-3.7 (-3.9, -3.5)</td>
<td>-5.2 (-6.8, -3.5)</td>
</tr>
<tr>
<td>% of Patients losing greater than or equal to 5% body weight</td>
<td>62.3%</td>
<td>34.4%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Difference from placebo (LSMean) (95% CI)</td>
<td>27.9 (23.9, 31.9)</td>
<td>32.6 (25.1, 40.1)</td>
<td>22.2 (13.9, 31.3)</td>
</tr>
<tr>
<td>% of Patients losing greater than 10% body weight</td>
<td>33.9%</td>
<td>15.4%</td>
<td>22.4%</td>
</tr>
<tr>
<td>Difference from placebo (LSMean) (95% CI)</td>
<td>18.5 (15.2, 21.7)</td>
<td>16.5 (11.7, 22.1)</td>
<td>18.5 (11.7, 25.3)</td>
</tr>
</tbody>
</table>

SD = Standard Deviation; CI = Confidence Interval

*p < 0.0001 compared to placebo. Type 1 error was controlled across the three endpoints.

Includes all randomized subjects who had a baseline body weight measurement. All available body weight data during the 56 week treatment period are included in the analysis. In Study 3 missing values for week 56 were handled using weighted regression analysis.

The cumulative frequency distributions of change in body weight from baseline to week 56 are shown in Figure 2 for Studies 1 and 2. One way to interpret this figure is to select a change in body weight of interest on the horizontal axis and note the corresponding proportions of patients (vertical axis) in each treatment group who achieved at least that degree of weight loss. For example, note that the vertical line arising from -10% in Study 1 intersects the Saxenda® and placebo curves at approximately 34% and 15%, respectively, which correspond to the values shown in Table 6.

Figure 2. Change in body weight (%) from baseline to week 56 (Study 1 on left and Study 2 on right)

The time courses of weight loss with Saxenda® and placebo from baseline through week 56 are depicted in Figures 3 and 4.

Figure 3. Change from baseline (%) in body weight (Study 1 on left and Study 2 on right)

Figure 4. Change from baseline (%) in body weight during Study 3
Effect of SAXENDA® on Body Weight in a 160-week Trial (Study 1, Subset of Patients with Abnormal Blood Glucose at Randomization)

The numbers and percentages of patients known to have lost greater than or equal to 5% body weight at week 56 and/or week 160 in Study 1 (patients with abnormal glucose at randomization only) are summarized in Table 7 for descriptive purposes.

Table 7. Changes in Weight at Week 56 and Week 160 for Study 1 (Subset of Patients with Abnormal Blood Glucose at Randomization)

<table>
<thead>
<tr>
<th></th>
<th>SAXENDA® (liraglutide) injection 3mg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline mean body weight (SD) (kg)</td>
<td>107.5 (21.6)</td>
<td>107.9 (21.8)</td>
</tr>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight at 56 weeks</td>
<td>817 (56%)</td>
<td>182 (25%)</td>
</tr>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight at 160 weeks</td>
<td>424 (28%)</td>
<td>102 (14%)</td>
</tr>
<tr>
<td>Number (%) of patients known to lose greater than or equal to 5% body weight at both 56 weeks and 160 weeks</td>
<td>391 (26%)</td>
<td>74 (10%)</td>
</tr>
<tr>
<td>Number (%) of patients with weight assessment at 160 weeks</td>
<td>747 (50%)</td>
<td>322 (43%)</td>
</tr>
</tbody>
</table>

SD = Standard Deviation

Includes all randomized subjects who had a baseline body weight measurement. All available body weight data at 56 and 160 weeks were included in the analysis.

Effect of SAXENDA® on Anthropometry and Cardiometabolic Parameters in 56-week Trials

Changes in waist circumference and cardiometabolic parameters with SAXENDA® are shown in Table 8 for Study 1 (patients without diabetes mellitus) and Table 9 for Study 2 (patients with type 2 diabetes). Results from Study 3, which also enrolled patients without diabetes mellitus, were similar to Study 1.

Table 8: Mean Changes in Anthropometry and Cardiometabolic Parameters in Study 1 (Patients without Diabetes)

<table>
<thead>
<tr>
<th></th>
<th>SAXENDA®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Change from Baseline (LSMean)</td>
<td>Change from Baseline (LSMean)</td>
</tr>
<tr>
<td>Waist Circumference (cm)</td>
<td>115.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mmHg)</td>
<td>123.0</td>
<td>-4.3</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mmHg)</td>
<td>78.7</td>
<td>-2.7</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>71.4</td>
<td>2.6</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dL)*</td>
<td>57.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Based on last observation carried forward method while on study drug

1 Least squares mean adjusted for treatment, country, sex, pre-diabetes status at screening, baseline BMI stratum and an interaction between pre-diabetes status at screening and baseline BMI stratum as fixed factors, and the baseline value as covariate.

2 See Warnings and Precautions (5.5)

* Baseline value is the geometric mean

Values are baseline median, median % change, and the Hodges-Lehmann estimate of the median treatment difference.

10.2% of patients treated with SAXENDA® and placebo discontinued treatment due to an adverse reaction. The primary endpoint was change in BMI SDS. At baseline, mean BMI SDS was 3.14 in the SAXENDA® group and 3.20 in the placebo group. At week 56, treatment with SAXENDA® resulted in statistically significant reduction in BMI SDS from baseline compared to placebo. The observed mean change in BMI SDS from baseline to week 56 was -0.23 in the SAXENDA® group and -0.05 in the placebo group. The observed treatment difference in BMI SDS reduction from baseline between SAXENDA® and placebo was -0.18 with a 95% confidence interval of -0.37, -0.00; p=0.0084.

The time course of change in BMI SDS with SAXENDA® and placebo from baseline through week 56 are depicted in Figure 5.

Figure 5: Change from Baseline in BMI SDS

Changes in weight and BMI with SAXENDA® are shown in Table 10. Changes in waist circumference and cardiometabolic parameters with SAXENDA® are shown in Table 11.

Table 10: Changes in Weight and BMI at Week 56 for Study 4 (Pediatric Patients Ages 12 to Less than 18)

<table>
<thead>
<tr>
<th></th>
<th>SAXENDA®</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline mean Body Weight (kg)</td>
<td>39.3</td>
<td>102.2</td>
</tr>
<tr>
<td>Mean Change from Baseline (%)</td>
<td>-2.65</td>
<td>2.37</td>
</tr>
<tr>
<td>BMI</td>
<td>Baseline mean BMI (kg/m²)</td>
<td>35.3</td>
</tr>
<tr>
<td>Mean Change from Baseline (%)</td>
<td>-4.29</td>
<td>0.35</td>
</tr>
<tr>
<td>Proportion of patients with greater than or equal to 5% reduction in baseline BMI at week 56 (%)</td>
<td>43.3%</td>
<td>13.7%</td>
</tr>
<tr>
<td>Proportion of patients with greater than or equal to 10% reduction in baseline BMI at week 56 (%)</td>
<td>26.1%</td>
<td>8.1%</td>
</tr>
</tbody>
</table>

Full Analysis Set. For body weight and BMI, baseline values are means, changes from baseline at week 56 are estimated means (least-squares) and treatment contrasts at week 56 are estimated treatment differences. Missing observations were imputed from the placebo arm based on a jump to reference multiple (x100) imputation approach.
Table 11. Mean Changes in Anthropometry and Cardiometabolic Parameters in Study 4 (Pediatric Patients Ages 12 to Less than 18)

<table>
<thead>
<tr>
<th></th>
<th>SAXENDA® N = 125</th>
<th>Placebo N = 126</th>
<th>Relative Difference of SAXENDA® to Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Change from Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Waist Circumference (cm)</td>
<td>105</td>
<td>-4.35</td>
<td>107</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mmHg)</td>
<td>116</td>
<td>-1.21</td>
<td>117</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mmHg)</td>
<td>72</td>
<td>0.77</td>
<td>73</td>
</tr>
<tr>
<td>Heart Rate (bpm)**</td>
<td>75</td>
<td>1.87</td>
<td>78</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.3</td>
<td>-0.10</td>
<td>5.3</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)**</td>
<td>154.2</td>
<td>0.84</td>
<td>152.2</td>
</tr>
<tr>
<td>LDL Cholesterol (mg/dL)**</td>
<td>85.5</td>
<td>1.74</td>
<td>82.5</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dL)**</td>
<td>42.7</td>
<td>5.14</td>
<td>42.7</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)**</td>
<td>109.1</td>
<td>-0.12</td>
<td>112.2</td>
</tr>
</tbody>
</table>

*See Warnings and Precautions (5.5).

**Baseline values are geometric means.

14.3 Cardiovascular Outcomes Trial of Liraglutide 1.8 mg in Adult Patients with Type 2 Diabetes and Cardiovascular Disease

Liraglutide 1.8 mg (Victoza®) is used in the treatment of type 2 diabetes mellitus in adults. The efficacy of liraglutide at doses below 3 mg daily has not been established for chronic weight management.

The LEADER trial (NCT01179048) randomized 9340 patients with inadequately controlled type 2 diabetes and cardiovascular disease to liraglutide 1.8 mg or placebo in addition to standard of care treatments for type 2 diabetes for a median duration of 3.5 years. Patients either were 50 years of age or older with established, stable cardiovascular, cerebrovascular, peripheral vascular disease, chronic renal failure or chronic heart failure (80% of patients), or were 60 years of age or older and had other specified risk factors of vascular disease (20% of patients). The population was 64% male, 78% Caucasian, 10% Asian and 8% Black, 12% of the population was Hispanic or Latino.

In total, 96.8% of the patients completed the trial; vital status was known at the end of the trial for 99.7%. The primary endpoint was the time from randomization to first occurrence of a major adverse cardiovascular event (MACE) defined as: cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke. No increased risk for MACE was observed with liraglutide 1.8 mg. The total number of primary component MACE endpoints was 1502 (608 [13.0%] with liraglutide 1.8 mg and 694 [14.9%] with placebo).

16 HOW SUPPLIED/STORAGE AND HANDLING

16.1 How Supplied

SAXENDA® injection: 6 mg/mL clear, colorless solution in a 3 mL single-patient-use pre-filled pen that delivers doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg is available in the following package sizes:

3 x SAXENDA® pen NDC 0169-2800-13
5 x SAXENDA® pen NDC 0169-2800-15

16.2 Recommended Storage

Prior to first use, SAXENDA® should be stored in a refrigerator between 36°F to 46°F (2°C to 8°C). Do not store in the freezer or directly adjacent to the refrigerator cooling element. Do not freeze SAXENDA® and do not use SAXENDA® if it has been frozen.

After initial use of the SAXENDA® pen, the pen can be stored for 30 days at controlled room temperature (59°F to 86°F; 15°C to 30°C) or in a refrigerator (36°F to 46°F; 2°C to 8°C). Keep the pen cap on when not in use. Protect SAXENDA® from excessive heat and sunlight. Always remove and safely discard the needle after each injection. Store the SAXENDA® pen without an injection needle attached. This will reduce the potential for contamination, infection, and leakage while also ensuring dosing accuracy.

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use).

Instructions

Advise patients to take SAXENDA® exactly as prescribed. Instruct patients to follow the dose escalation schedule and to not take more than the recommended dose.

Instruct adult patients to discontinue SAXENDA® if they have not achieved 4% weight loss by 16 weeks of treatment. Instruct pediatric patients 12 years of age and older to discontinue SAXENDA® if they have not achieved a BMI reduction of 1% from baseline after 12 weeks on the maintenance dose.

Risk of Thyroid C-cell Tumors

Inform patients that liraglutide causes benign and malignant thyroid C-cell tumors in mice and rats and that the human relevance of this finding has not been determined. Counsel patients to report symptoms of thyroid tumors (e.g., a lump in the neck, hoarseness, dysphagia or dyspnea) to their healthcare provider (See Boxed Warning and Warnings and Precautions [5.7]).

Acute Pancreatitis

Inform patients of the potential risk for acute pancreatitis. Explain that persistent severe abdominal pain that may radiate to the back which may or may not be accompanied by vomiting is the hallmark symptom of acute pancreatitis. Instruct patients to discontinue SAXENDA® promptly and contact their health care provider if persistent severe abdominal pain occurs.

Acute Gallbladder Disease

Inform patients of the risk of acute gallbladder disease. Advise patients that substantial or rapid weight loss can increase the risk of gallbladder disease, but that gallbladder disease may also occur in the absence of substantial or rapid weight loss. Instruct patients to contact their healthcare provider for appropriate clinical follow-up if gallbladder disease is suspected.

Hypoglycemia

Inform pediatric patients of the risk of hypoglycemia and educate all patients on the signs and symptoms of hypoglycemia. Inform adult patients with type 2 diabetes mellitus on an insulin secretagogue (e.g., sulfonylurea) or insulin that they may have an increased risk of hypoglycemia when using SAXENDA® and to report signs and/or symptoms of hypoglycemia to their healthcare provider.

Heart Rate Increase

Inform patients to report symptoms of sustained periods of heart pounding or racing while at rest to their healthcare provider. Discontinue SAXENDA® in patients who experience a sustained increase in resting heart rate.

Dehydration and Renal Impairment

Advise patients of the risk of dehydration due to gastrointestinal adverse reactions and to take precautions to avoid fluid depletion. Instruct patients of the potential risk for worsening renal function, which in some cases may require dialysis.

Hypersensitivity Reactions

Inform patients that serious hypersensitivity reactions have been reported during postmarketing use of SAXENDA®. Advise patients on the symptoms of hypersensitivity reactions and instruct them to stop taking SAXENDA® and seek medical advice promptly if such symptoms occur (See Warnings and Precautions [5.7]).

Suicidal Behavior and Ideation

Advise patients to report emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Inform patients that if they experience suicidal thoughts or behaviors, they should stop taking SAXENDA®.

Jaundice and Hepatitis

Inform patients that jaundice and hepatitis have been reported during postmarketing use of liraglutide. Instruct patients to contact their healthcare provider if they develop jaundice.

Never Share a SAXENDA® Pen Between Patients

Inform patients that they should never share a SAXENDA® pen with another person, even if the needle is changed. Sharing of the pen between patients may pose a risk of transmission of infection.

Full Analysis Set. Baseline values are means, changes from baseline at week 56 are estimated means (least-squares) and treatment contrasts at week 56 are estimated treatment differences. Missing observations were imputed from the placebo arm based on a jump to reference multiple (x100) imputation approach.

** Baseline values are geometric means.
SAXENDA® (liraglutide) injection 3mg Medication Guide

MEDICATION GUIDE

SAXENDA® (sax-end-ah) (liraglutide) injection for subcutaneous use

Do not share your SAXENDA® pen with others even if the needle has been changed. You may give other people a serious infection or get a serious infection from them.

What is the most important information I should know about SAXENDA®?

Serious side effects may happen in people who take SAXENDA®, including:

- Possible thyroid tumors, including cancer. Tell your healthcare provider if you get a lump or swelling in your neck, hoarseness, trouble swallowing, or shortness of breath. These may be symptoms of thyroid cancer. In studies with rats and mice, SAXENDA® and medicines that work like SAXENDA® caused thyroid tumors, including thyroid cancer. It is not known if SAXENDA® will cause thyroid tumors or a type of thyroid cancer called medullary thyroid carcinoma (MTC) in people.
- If you or any of your family have ever had a type of thyroid cancer called medullary thyroid carcinoma (MTC), or if you have an endocrine system condition called Multiple Endocrine Neoplasia syndrome type 2 (MEN 2), do not use SAXENDA®.

What is SAXENDA®?

SAXENDA® is an injectable prescription medicine used for adults with obesity or overweight (excess weight) who also have weight related medical problems, and children aged 12 to 17 years with a body weight above 132 pounds (60 kg) and obesity to help them lose weight and keep the weight off. Your healthcare provider may need to adjust your dose, depending on your response to treatment. SAXENDA® should be used with a reduced calorie diet and increased physical activity. SAXENDA® and VICTOZA® have the same active ingredient, liraglutide, and should not be used together or with other GLP-1 receptor agonist medicines.

- It is not known if SAXENDA® is safe and effective when taken with other prescription, over-the-counter medicines, or herbal weight loss products.
- It is not known if SAXENDA® is safe and effective in children under 12 years of age.
- It is not known if SAXENDA® is safe and effective in children aged 12 to 17 years with type 2 diabetes.

Who should not use SAXENDA®?

Do not use SAXENDA® if:

- you or any of your family have ever had a type of thyroid cancer called medullary thyroid carcinoma (MTC) or if you have an endocrine system condition called Multiple Endocrine Neoplasia syndrome type 2 (MEN 2), you have had a serious allergic reaction to liraglutide or any of the ingredients in SAXENDA®. See the end of this Medication Guide for a complete list of ingredients in SAXENDA®. Symptoms of a serious allergic reaction include:
 - swelling of your face, lips, tongue, or throat
 - severe rash or itching
 - very rapid heartbeat
 - are pregnant or plan to become pregnant. SAXENDA® may harm your unborn baby.

Before taking SAXENDA®, tell your healthcare provider about all of your medical conditions, including if you:

- are taking certain medicines called GLP-1 receptor agonists.
- have severe problems with your stomach, such as slowed emptying of your stomach (gastroparesis) or problems with digesting food.
- have or have had problems with your pancreas, kidneys or liver.
- have or have had depression, suicidal thoughts, or mental health issues.
- are breastfeeding or plan to breastfeed. It is not known if SAXENDA® passes into your breast milk. You and your healthcare provider should decide if you will use SAXENDA® or breastfeed.

Tell your healthcare provider about all the medicines you take including prescription, over-the-counter medicines, vitamins, and herbal supplements. SAXENDA® slows stomach emptying and can affect medicines that need to pass through the stomach quickly. SAXENDA® may affect the way some medicines work and some other medicines may affect the way SAXENDA® works. Tell your healthcare provider if you take diabetes medicines, especially insulin and sulfonylurea medicines. Talk with your healthcare provider if you are not sure if you take any of these medicines.

How should I use SAXENDA®?

- Read the Instructions for Use that come with SAXENDA®.
- Use SAXENDA® exactly as prescribed by your healthcare provider.
- Your healthcare provider should show you how to use SAXENDA® before you use it for the first time.
- Use SAXENDA® exactly as prescribed by your healthcare provider. Your dose should be increased after using SAXENDA® for 1 week until you reach the 3 mg dose.
- Start SAXENDA® with 0.6 mg per day in your first week. In your second week, increase your daily dose to 1.2 mg. In the third week, increase your daily dose to 1.8 mg. In the fourth week, increase your daily dose to 2.4 mg and in the fifth week onwards, increase your daily dose to the full dose of 3 mg. After that, do not change your dose unless your healthcare provider tells you to. Children may reduce their dose to 2.4 mg daily if the maximum dose is not tolerated.
- SAXENDA® is injected 1 time each day, at any time during the day.
- Inject your dose of SAXENDA® under the skin (subcutaneously) in your stomach area (abdomen), upper leg (thigh), or upper arm, as instructed by your healthcare provider. Do not inject into a vein or muscle.
- Change (rotate) your injection site within the area you choose with each injection to reduce your risk of getting lumps under the skin (cutaneous amyloidosis). Do not use the same site for each injection.
- If you take too much SAXENDA®, call your healthcare provider right away. Taking too much SAXENDA® may cause severe nausea, severe vomiting, and low blood sugar (hypoglycemia).
- If you miss your daily dose of SAXENDA®, just take your next daily dose as usual on the following day. Do not take an extra dose of SAXENDA® or increase your dose on the following day to make up for your missed dose. If you miss your dose of SAXENDA® for 3 days or more, call your healthcare provider to talk about how to restart your treatment.
- You can take SAXENDA® with or without food.
- Throw away the used SAXENDA® pen after 30 days. Your healthcare provider should start you on a reduced calorie diet and increased physical activity when you start taking SAXENDA®. Stay on this program while you are taking SAXENDA®.

What are the possible side effects of SAXENDA®?

SAXENDA® may cause serious side effects, including:

- See “What is the most important information I should know about SAXENDA®?”
- Inflammation of the pancreas (pancreatitis). Stop using SAXENDA® and call your healthcare provider right away if you have severe pain in your stomach area (abdomen) that will not go away, with or without vomiting. You may feel the pain from your stomach area (abdomen) to your back.
- Gallbladder problems. SAXENDA® may cause gallbladder problems including gallstones. Some gallbladder problems need surgery. Call your healthcare provider if you have any of the following symptoms:
 - pain in your upper stomach (abdomen)
 - yellowing of your skin or eyes (jaundice)
 - fever
 - clay-colored stools
- Increased risk of low blood sugar (hypoglycemia) in adults with type 2 diabetes mellitus who also take medicines to treat type 2 diabetes mellitus such as sulfonylureas or insulin
- Risk of low blood sugar (hypoglycemia) in children who are 12 years of age and older without type 2 diabetes mellitus
- Signs and symptoms of low blood sugar may include:
 - shakiness
 - weakness
 - dizziness
 - confusion
 - irritability
 - hunger
 - fast heartbeat
 - feeling jittery
 - severe nausea, severe vomiting, and low blood sugar (hypoglycemia).

Tell your healthcare provider about how to recognize and treat low blood sugar. You should check your blood sugar before you start taking SAXENDA® and while you take SAXENDA®.

- Increased heart rate. SAXENDA® can increase your heart rate while you are at rest. Your healthcare provider should check your heart rate while you take SAXENDA®. Tell your healthcare provider if you feel your heart racing or pounding in your chest and it lasts for several minutes.
- Kidney problems (kidney failure). SAXENDA® may cause nausea, vomiting or diarrhea leading to loss of fluids (dehydration). Dehydration may cause kidney failure which can lead to the need for dialysis. This can happen in people who have never had kidney problems before. Drinking plenty of fluids may reduce your chance of dehydration. Call your healthcare provider right away if you have nausea, vomiting, or diarrhea that does not go away, or if you cannot drink liquids by mouth.
- Serious allergic reactions. Stop using SAXENDA® and get medical help right away if you have any symptoms of a serious allergic reaction including:
 - swelling of your face, lips, tongue, or throat
 - fainting or feeling dizzy
 - very rapid heartbeat
 - depression or thoughts of suicide. You should pay attention to any mental changes, especially sudden changes, in your mood, behaviors, thoughts, or feelings. Call your healthcare provider right away if you have any mental changes that are new, worse, or worry you.

The most common side effects of SAXENDA® in adults include:

- Nausea
- Injection site reaction
- Change in energy (lipase) levels in your blood
- Diarrhea
- Low blood sugar (hypoglycemia)
- Constipation
- Headache
- Vomiting
- Upset stomach (dyspepsia)

Additional common side effects in children are fever and gastroenteritis.

Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of SAXENDA®. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

Keep your SAXENDA® pen, pen needles, and all medicines out of the reach of children.

General information about the safe and effective use of SAXENDA®.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use SAXENDA® for a condition for which it was not prescribed. Do not give SAXENDA® to other people, even if they have the same symptoms that you have. It may harm them.

You can ask your pharmacist or healthcare provider for information about SAXENDA® that is written for health professionals.

What are the ingredients in SAXENDA®?

Active ingredients:
- Liraglutide

Inactive ingredients:
- Disodium phosphate dihydrite, propylene glycol, and water for injection. Hydrochloric acid or sodium hydroxide may be added to adjust the pH.

Manufactured by: Novo Nordisk A/S, DK-2880 Bagsvaerd, Denmark.
For information about SAXENDA® go to www.SAXENDA.com or contact: Novo Nordisk Inc., 800 Scudders Mill Road, Plainsboro, NJ 08536 1-844-363-4448.
SAXENDA®, VICTOZA®, and NovoFine® are registered trademarks of Novo Nordisk A/S.

This Medication Guide has been approved by the U.S. Food and Drug Administration. Revised: 06/2022

© 2023 Novo Nordisk US235X0010 5/2023
Instructions for Use
• Read these instructions carefully before using your Saxenda® pen.
• Do not use your pen without proper training from your healthcare provider. Make sure that you know how to give yourself an injection with the pen before you start your treatment.

△ If you are blind or have poor eyesight and cannot read the dose counter on the pen, do not use this pen without help. Get help from a person with good eyesight who is trained to use the Saxenda® pen.
• You can refresh your training at any time by watching the online training video at www.saxenda.com.
• Start by checking your pen to make sure that it contains Saxenda®. Then look at the pictures below to get to know the different parts of your pen and needle.
• Your pen is a prefilled, dial-a-dose, single-patient-use pen. It contains 18 mg of liraglutide, and you can select doses of 0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg and 3 mg. Your pen is made to be used with NovoFine® or NovoTwist® disposable needles up to a length of 8 mm. Pen needles are not included with your Saxenda® pen.

Saxenda® pen and needle (example)

Step 1. Prepare your pen with a new needle
• Wash your hands with soap and water.
• Check the name and colored label of your pen, to make sure that it contains Saxenda®. This is especially important if you take more than 1 type of medicine.
• Pull off the pen cap.
• Check that Saxenda® in your pen is clear and colorless. Look through the pen window. If Saxenda® looks cloudy, do not use the pen.
• Take a new needle, and tear off the paper tab.

Step 2. Check the Saxenda® flow with each new pen
• Check the Saxenda® flow before your first injection with each new pen.
• Hold the pen with the needle pointing up.
• Press and hold in the dose button until the dose counter shows 0. The 0 must line up with the dose pointer.
• If no drop appears, repeat Step 2 above as shown in Figures G and H up to 6 times. If there is still no drop, change the needle and repeat Step 2 as shown in Figures G and H 1 more time.
• Do not use the pen if a drop of Saxenda® still does not appear.

△ Always make sure that a drop appears at the needle tip before you use a new pen for the first time. This makes sure that Saxenda® flows. If no drop appears, you will not inject any Saxenda®, even though the dose counter may move. This may mean that there is a blocked or damaged needle.
• A small drop may remain at the needle tip, but it will not be injected.

Step 3. Select your dose
• Turn the dose selector until the dose counter shows your dose (0.6 mg, 1.2 mg, 1.8 mg, 2.4 mg or 3 mg).
• Make sure you know the dose of Saxenda® you should use.
• If you select the wrong dose, you can turn the dose selector forward or backwards to the correct dose.

△ Always use the dose counter and the dose pointer to see how many mg you select.

Step 4. Inject your dose
• Insert the needle into your skin as your healthcare provider has shown you.
• Make sure you can see the dose counter.
• Do not cover it with your fingers. This could stop the injection.

Step 5. Dispose of your pen
• Do not use your pen without proper training from your healthcare provider, you may split your dose between your current pen and a new pen. Use a calculator to plan the doses as instructed by your healthcare provider.

△ Be very careful to calculate correctly. If you are not sure how to split your dose using 2 pens, then select and inject the dose you need with a new pen.
SAXENDA® (liraglutide) injection 3mg Instructions for Use

- Press and hold down the dose button until the dose counter shows 0. The 0 must line up with the dose pointer. You may then hear or feel a click.

- Keep the needle in your skin after the dose counter has returned to 0 and count slowly to 6.

- If the needle is removed earlier, you may see a stream of Saxenda® coming from the needle tip. If this happens, the full dose will not be delivered.

- Remove the needle from your skin. If blood appears at the injection site, press lightly. Do not rub the area.

- Always watch the dose counter to know how many mg you inject. Hold the dose button down until the dose counter shows 0.

- How to identify a blocked or damaged needle?
 - If 0 does not appear in the dose counter after continuously pressing the dose button, you may have used a blocked or damaged needle.
 - If this happens you have not received any Saxenda® even though the dose counter has moved from the original dose that you have set.

- How to handle a blocked needle?
 Change the needle as described in Step 5, and repeat all steps starting with Step 1. “Prepare your pen with a new needle”. Make sure you select the full dose you need.

- Never touch the dose counter when you inject. This can stop the injection.

- You may see a drop of Saxenda® at the needle tip after injecting. This is normal and does not affect your dose.

Step 5. After your injection

- Carefully remove the needle from the pen. Do not put the needle caps back on the needle, to avoid needle sticks.

- Place the needle in a sharps container right away to reduce the risk of needle sticks.

- Put the pen cap on your pen after each use to protect Saxenda® from light.

- Always dispose of the needle after each injection.

 - Do not throw away in the household trash. Put the needle and any empty Saxenda® pen or any pen used for 30 days still containing Saxenda® in a FDA-cleared sharps disposal container right away after use.

 - If you do not have a FDA-cleared sharps disposal container, you may use a household container that is:
 - made of a heavy-duty plastic
 - can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out upright and stable during use
 - leak-resistant
 - properly labeled to warn of hazardous waste inside the container

 - When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles and syringes. For more information about the safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA’s website at: http://www.fda.gov/safesharpsdisposal

 - Do not dispose of your used sharps disposal container in your household trash unless your community guidelines permit this.

 - Do not recycle your used sharps disposal container.

 - Safely dispose of Saxenda® that is out of date or no longer needed.

Important

- Caregivers must be very careful when handling used needles to prevent needle sticks and cross infection.

- Never use a syringe to withdraw Saxenda® from your pen.

- Always carry an extra pen and new needles with you, in case of loss or damage.

- Always keep your pen and needles out of reach of others, especially children.

- Do not share your Saxenda® pen or needles with anyone else. You may give an infection to them or get an infection from them.

- Always keep your pen with you. Do not leave it in a car or other place where it can get too hot or too cold.

- How should I store my Saxenda® pen?
 - Store your new, unused Saxenda® pens in the refrigerator at 36°F to 46°F (2°C to 8°C).

 - Store your pen in use for 30 days at 59°F to 86°F (15°C to 30°C) or in a refrigerator at 36°F to 46°F (2°C to 8°C).

- The Saxenda® pen you are using should be thrown away after 30 days, even if it still has Saxenda® left in it.

- Do not freeze Saxenda®. Do not use Saxenda® if it has been frozen.

- Unused Saxenda® pens may be used until the expiration date printed on the label, if kept in the refrigerator.

- Keep Saxenda® away from heat and out of the light.

This Medication Guide and Instructions for Use have been approved by the U.S. Food and Drug Administration.

December 2020

© 2023 Novo Nordisk

US23SX00010 5/2023